

Mathematics

Advanced GCE **A2 7890 - 2**

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

January 2009

3890-2/7890-2/MS/R/09

nge of nclude

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2009

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

MMN. My Maths Cloud Com

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEMES FOR THE UNITS

Unit/Content	Page
4721 Core Mathematics 1	1
4722 Core Mathematics 2	5
4723 Core Mathematics 3	8
4724 Core Mathematics 4	11
4725 Further Pure Mathematics 1	15
4726 Further Pure Mathematics 2	18
4727 Further Pure Mathematics 3	21
4728 Mechanics 1	25
4729 Mechanics 2	28
4730 Mechanics 3	30
4732 Probability & Statistics 1	34
4733 Probability & Statistics 2	38
4734 Probability & Statistics 3	40
4736 Decision Mathematics 1	43
4737 Decision Mathematics 2	47
Grade Thresholds	53

4721 Core Mathematics 1

			,
1	$3\sqrt{5} + \frac{20\sqrt{5}}{5}$ $= 7\sqrt{5}$	B1	$3\sqrt{5}$ soi
	$=7\sqrt{5}$	M1	Attempt to rationalise $\frac{20}{\sqrt{5}}$
		A1 3 3	cao
2 (i)	x^2	B1 1	cao
(ii)	$\frac{3y^4 \times 1000y^3}{2y^5}$ = 1500y ²	D1	1000 3
	$2y^3$	B1	$1000y^3$ soi
	$=1500y^2$	B1 B1 3	1500 y ²
3	Let $y = x^{\frac{1}{3}}$ $3y^2 + y - 2 = 0$	*M1	Attempt a substitution to obtain a quadratic or factorise with $\sqrt[3]{x}$ in each bracket
	$\begin{vmatrix} 3y + y - 2 - 0 \\ (3y - 2)(y + 1) = 0 \end{vmatrix}$	DM1	Correct method to find roots
	$y = \frac{2}{3}, y = -1$	A1	Both values correct
	$x = \left(\frac{2}{3}\right)^3, x = (-1)^3$	DM1	Attempt cube of at least one value
	$x = \frac{8}{27}, x = -1$	A1 ft 5	Both answers correctly followed through
		5	SR If M1* not awarded, B1 $x = -1$ from T & I
4 (i)		B1	Excellent curve in one quadrant or roughly correct curves in correct 2 quadrants
		B1 2	Completely correct
(ii)	$y = \frac{1}{(x+3)^2}$	M1	$\frac{1}{(x\pm3)^2}$
	(x+3)	A1 2	$y = \frac{1}{(x+3)^2}$
(iii)	(1, 4)	B1 B1 2 6	Correct x coordinate Correct y coordinate

5 (i)	dy 50 -6	M1		kx^{-6}
3 (1)	$\frac{dy}{dx} = -50x^{-6}$	A 1	2	F. II.
				Fully correct answer $ \frac{4\sqrt{x} = x^{\frac{1}{4}}}{\sqrt[4]{x}} \text{ soi} $ $ \frac{1}{4}x^{c} $ $ kx^{-\frac{3}{4}} $
(ii)	$y = x^{\frac{1}{4}}$ $\frac{dy}{dx} = \frac{1}{4}x^{-\frac{3}{4}}$	В1		$\frac{4}{\sqrt{r}} - r^{\frac{1}{4}}$ soi
	y = x	B1		$\sqrt{x} = x$ so 1
	$\frac{dy}{dx} = \frac{1}{4}x^{-\frac{1}{4}}$	B1	2	$\frac{-x^c}{4}$
	ax - 4	ВІ	3	$l_{rv}^{-\frac{3}{4}}$
				KX -
(iii)	$y = (x^2 + 3x)(1 - 5x)$	M1		Attempt to multiply out fully
	$=3x-14x^2-5x^3$	A1		Correct expression (may have 4 terms)
	$y = (x^{2} + 3x)(1 - 5x)$ $= 3x - 14x^{2} - 5x^{3}$ $\frac{dy}{dx} = 3 - 28x - 15x^{2}$, , ,
	$\frac{3}{dx} = 3 - 28x - 15x^2$	M1		Two terms correctly differentiated from their
		A1	4	expanded expression Completely correct (3 terms)
		111	•	F
		D1	9	_
6(i)	$5(x^2+4x)-8$	B1		p=5
	$=5[(x+2)^2-4]-8$	B1		$(x+2)^2$ seen or $q=2$
	$=5(x+2)^2-20-8$	M1		$-8-5q^2$ or $-\frac{8}{5}-q^2$
	$= 5[(x+2)^{2} - 4] - 8$ $= 5(x+2)^{2} - 20 - 8$ $= 5(x+2)^{2} - 28$	A1	4	$(x+2)^2$ seen or $q = 2$ $-8-5q^2$ or $-\frac{8}{5}-q^2$ r = -28
(ii)	x = -2			
		B1 ft	1	
(iii)	$20^2 - 4 \times 5 \times -8$	M1		Uses $b^2 - 4ac$
(:)	=560	A1	2	560
(iv)	2 real roots	В1	1	2 real roots
			8	2.000.100.00
7(i)	30 + 4k - 10 = 0	M1		Attempt to substitute $x = 10$ into equation of line
	$\therefore k = -5$	A1	2	1
(ii)				
	$\sqrt{(10-2)^2 + (-5-1)^2}$ $= \sqrt{64+36}$	M1		Correct method to find line length using Pythagoras'
	$=\sqrt{64+36}$			theorem
	=10	A1	2	cao, dependent on correct value of k in (i)
(iii)				
	Centre (6, -2)	B1		
	Radius 5	B1	2	
(iv)	Midpoint of AB = $(6, -2)$	D1		
	Length of $AB = 2 \times \text{radius}$	B1	2	One correct statement of verification
	Both A and B lie on circumference	B1	2	Complete verification
	Centre lies on line $3x + 4y - 10 = 0$		8	

A1

B1

B1

В1

8 (i)	$x = \frac{8 \pm \sqrt{(-8)^2 - (4 \times -1 \times 5)}}{}$
	-2
	$=\frac{8\pm\sqrt{84}}{}$
	$= -4 - \sqrt{21}$ or $= -4 + \sqrt{21}$

M1 Correct method to solve quadratic

$$A1 \qquad x = \frac{8 \pm \sqrt{84}}{-2}$$

Both roots correct and simplified

(ii)
$$x \le -4 - \sqrt{21}$$
, $x \ge -4 + \sqrt{21}$

Identifying $x \le$ their lower root, $x \ge$ their higher root M1

A1 2
$$x \le -4 - \sqrt{21}$$
, $x \ge -4 + \sqrt{21}$
(not wrapped, no 'and')

В1 Roughly correct negative cubic with max and min

(0, 20)B1

10

Cubic with 3 distinct real roots

Completely correct graph 5

$$9 \qquad \frac{dy}{dx} = 3x^2 + 2px$$

$$\frac{dy}{dx} = 3x^2 + 2px$$

$$\frac{dy}{dx} = 3x^2 + 2px$$

Attempt to differentiate Correct expression cao

When
$$x = 4$$
, $\frac{dy}{dx} = 0$

Setting their $\frac{dy}{dx} = 0$ M1

$$\therefore 3 \times 4^2 + 8p = 0$$

Substitution of x = 4 into their $\frac{dy}{dx} = 0$ to evaluate p

$$8p = -48$$
$$p = -6$$

A1

M1

M1

Looks at sign of $\frac{d^2y}{dx^2}$, derived correctly from their

$$\frac{d^2y}{dx^2} = 6x - 12$$

 $\frac{dy}{dx}$, or other correct method

When x = 4, 6x - 12 > 0

Minimum point CWO 7 **A**1

Minimum point

10(i)	$\frac{dy}{dx} = 2x + 1$ $= 5$	M1 A1 2	Attempt to differentiate <i>y</i> cao
(ii)	Gradient of normal = $-\frac{1}{5}$ When $x = 2$, $y = 6$ $y - 6 = -\frac{1}{5}(x - 2)$ x + 5y - 32 = 0	B1 ft B1 M1 A1 4	ft from a non-zero numerical value in (i) May be embedded in equation of line Equation of line, any non-zero gradient, their y coordinate Correct equation in correct form
(iii)	$x^{2} + x = kx - 4$ $x^{2} + (1-k)x + 4 = 0$ One solution => $b^{2} - 4ac = 0$ $(1-k)^{2} - 4 \times 1 \times 4 = 0$ $(1-k)^{2} = 16$ $1 - k = \pm 4$ $k = -3$ or 5	*M1 DM1 DM1 A1 DM1 A1 DM1 A1	Equating $y_1 = y_2$ Statement that discriminant = 0 Attempt (involving k) to use a, b, c from their equation Correct equation (may be unsimplified) Correct method to find k , dep on 1 st 3Ms Both values correct
		12	

least 2 terms

4722 Core Mathematics 2

1 (i)	$\int (x^3 + 8x - 5) dx = \frac{1}{4}x^4 + 4x^2 - 5x + c$	M1		Attempt integration – increase in power for at least 2 term
	•	A 1		Obtain at least 2 correct terms
		A 1	3	Obtain $\frac{1}{4}x^4 + 4x^2 - 5x + c$ (and no integral sign or dx)

(ii)
$$\int 12x^{\frac{1}{2}} dx = 8x^{\frac{3}{2}} + c$$
 B1 State or imply $\sqrt{x} = x^{\frac{1}{2}}$

M1 Obtain
$$kx^{\frac{3}{2}}$$

A1 3 Obtain
$$8x^{\frac{3}{2}} + c$$
 (and no integral sign or dx) (only penalise lack of + c, or integral sign or dx once)

6

2 (i)
$$140^{\circ} = 140 \times \frac{\pi}{180}$$
 M1 Attempt to convert 140° to radians

A1 **2** Obtain
$$\frac{7}{9}\pi$$
, or exact equiv

(ii) arc
$$AB = 7 \times \frac{7}{9} \pi$$

= 17.1
chord $AB = 2 \times 7 \sin \frac{7}{18} \pi = 13.2$

M1 Attempt arc length using
$$r\theta$$
 or equiv method

A1
$$\sqrt{}$$
 Obtain 17.1, $\frac{49}{9}\pi$ or unsimplified equiv M1 Attempt chord using trig. or cosine or sine rules

hence perimeter =
$$30.3$$
 cm

6

3 (i)
$$u_1 = 23 \frac{1}{3}$$

 $u_2 = 22 \frac{2}{3}$, $u_3 = 22$

B1 State
$$u_1 = 23^1/_3$$

B1 2 State
$$u_2 = 22^2/_3$$
 and $u_3 = 22$

(ii)
$$24 - \frac{2k}{3} = 0$$

 $k = 36$

M1 Equate
$$u_k$$
 to 0 A1 2 Obtain 36

(iii)
$$S_{20} = \frac{20}{2} \left(2 \times 23 \frac{1}{3} + 19 \times \frac{-2}{3} \right)$$

= 340

M1 Attempt sum of AP with
$$n = 20$$

Correct unsimplified S_{20} A1

3 Obtain 340 **A**1

7

4
$$\int_{-2}^{2} (x^4 + 3) dx = \left[\frac{1}{5} x^5 + 3x \right]_{-2}^{2}$$

$$= \left(\frac{32}{5} + 6\right) - \left(\frac{-32}{5} - 6\right)$$

A1 Obtain correct
$$\frac{1}{5}x^5 + 3x$$

$$= 24\frac{4}{5}$$

M1 Use limits (any two of -2, 0, 2), correct order/subtraction **A**1 Obtain $24\frac{4}{5}$

area of rectangle = 19×4 hence shaded area = $76 - 24 \frac{4}{5}$ B1 State or imply correct area of rectangle

$$=51\frac{1}{5}$$

M1 Attempt correct method for shaded area Obtain $51\frac{1}{5}$ aef such as 51.2, $\frac{256}{5}$ **A1**

Area = 19 - (
$$x^4$$
 + 3)
= 16 - x^4
$$\int_{-2}^{2} (16 - x^4) dx = \left[6x - \frac{1}{5}x^5 \right]_{2}^{2}$$

Attempt subtraction, either order Obtain $16 - x^4$ (not from $x^4 + 3 = 19$)

A1 Obtain
$$\pm \left(16x - \frac{1}{5}x^5\right)$$

$$= (32 - \frac{32}{5}) - (-32 - \frac{-32}{5})$$
$$= 51 \frac{1}{5}$$

- M1 Use limits – correct order / subtraction
- Α1 Obtain $\pm 51\frac{1}{5}$
- **A**1 Obtain $51\frac{1}{5}$ only, no wrong working

5 (i)
$$\frac{TA}{\sin 107} = \frac{50}{\sin 3}$$

 $TA = 914 \text{ m}$

- Attempt use of correct sine rule to find TA, or equiv M1
- Obtain 914, or better A1

(ii)
$$TC = \sqrt{914^2 + 150^2 - 2 \times 914 \times 150 \times \cos 70}$$

- Attempt use of correct cosine rule, or equiv, to find TC
- Correct unsimplified expression for TC, following their (i) A1√
 - A1 Obtain 874, or better
- (iii) dist from $A = 914 \times \cos 70 = 313 \text{ m}$ beyond C, hence 874 m is shortest dist

perp dist = $914 \times \sin 70 = 859 \text{ m}$

- M1 **A**1
- Attempt to locate point of closest approach
 - Convincing argument that the point is beyond C, or obtain 859, or better
 - **SR** B1 for 874 stated with no method shown

7

6 (i)
$$S_{\infty} = \frac{20}{1-0.9}$$

OR

- Attempt use of $S_{\infty} = \frac{a}{1-r}$ M1
- **A**1 Obtain 200

(ii)
$$S_{30} = \frac{20(1 - 0.9^{30})}{1 - 0.9}$$

= 874 m

- Attempt use of correct sum formula for a GP, with n = 30M1
- A1 Obtain 192, or better

(iii)
$$20 \times 0.9^{p-1} < 0.4$$

 $0.9^{p-1} < 0.02$

Correct $20 \times 0.9^{p-1}$ seen or implied

$$0.9^{p-1} < 0.02$$

$$(p-1)\log 0.9 < \log 0.02$$

- Link to 0.4, rearrange to $0.9^k = c$ (or >, <), introduce M1
- $p 1 > \frac{\log 0.02}{\log 0.9}$
- logarithms, and drop power, or equiv correct method

p > 38.1hence p = 39 M1 Correct method for solving their (in)equation

A1

- State 39 (not inequality), no wrong working seen

8

7 (i)
$$6k^2a^2 = 24$$

Obtain at least two of 6, k^2 , a^2

$$k^2 a^2 = 4$$

M1dep* Equate
$$6k^m a^n$$
 to 24

$$ak = 2$$
 A.G.

k = 4, $a = \frac{1}{2}$

A1 3 Show
$$ak = 2$$
 convincingly – no errors allowed

(ii)
$$4k^3 a = 128$$

 $4k^3 \left(\frac{2}{k}\right) = 128$

Equate to 128 and attempt to eliminate a or k

State or imply coeff of x is $4k^3a$

$$k^2 = 16$$

Obtain
$$k = 4$$

A1 **4** Obtain
$$a = \frac{1}{2}$$

SR B1 for
$$k = \pm 4$$
, $a = \pm \frac{1}{2}$

(iii)
$$4 \times 4 \times \left(\frac{1}{2}\right)^3 = 2$$

M1

Attempt $4 \times k \times a^3$, following their a and k (allow if still in

- terms of a, k)
- **A**1 2 Obtain 2 (allow $2x^3$)

8 (a)(i)
$$\log_a xy = p + q$$

B1 1 State
$$p + q$$
 cwo

(ii)
$$\log_{a} \frac{(a^{2} x^{3})}{y} = 2 + 3p - q$$

Use $\log a^b = b \log a$ correctly at least once M1

(ii)
$$\log_a \frac{(a \ x)}{y} = 2 + 3p - q$$

M1 Use $\log \frac{a}{b} = \log a - \log b$ correctly

3 Obtain
$$2 + 3p - q$$

(b)(i)
$$\log_{10} \frac{x^2-10}{x}$$

B1 1 State
$$\log_{10} \frac{x^2-10}{x}$$
 (with or without base 10)

State or imply that $2\log_{10} 3 = \log_{10} 3^2$

(ii)
$$\log_{10} \frac{x^2 - 10}{x} = \log_{10} 9$$

$$\log_{10} \frac{x - 10}{x} = \log_{10} 9$$

$$\frac{x^2 - 10}{x} = 9$$

$$x^2 - 9x - 10 = 0$$

A1 Obtain correct
$$x^2 - 9x - 10 = 0$$
 aef, no fractions
M1 Attempt to solve three term quadratic

$$(x-10)(x+1) = 0$$

A1 5 Obtain
$$x = 10$$
 only

x = 10

10

9 (i)
$$f(1) = 1 - 1 - 3 + 3 = 0$$
 A.G.

$$f(x) = (x - 1)(x^2 - 3)$$

 $\tan x = \sqrt{3} \Rightarrow x = \frac{\pi}{3}, \frac{4\pi}{3}$

 $\tan x = 1 \Rightarrow x = \frac{\pi}{4}, \frac{5\pi}{4}$

 $\tan x = -\sqrt{3} \Rightarrow x = \frac{2\pi}{3}, \frac{5\pi}{3}$

B1 Confirm
$$f(1) = 0$$
, or division with no remainder shown, or matching coeffs with $R = 0$

$$f(x) = (x - 1)(x^2 - 3)$$

M1 Attempt complete division by
$$(x-1)$$
, or equiv

A1 Obtain
$$x^2 + k$$

A1 Obtain completely correct quotient (allow $x^2 + 0x - 3$)

$$x^2 = 3$$

M1 Attempt to solve
$$x^2 = 3$$

$$x = \pm \sqrt{3}$$

A1 6 Obtain
$$x = \pm \sqrt{3}$$
 only

(ii)
$$\tan x = 1, \sqrt{3}, -\sqrt{3}$$

State or imply $\tan x = 1$ or $\tan x =$ at least one of their roots from (i)

Attempt to solve $\tan x = k$ at least once

Obtain at least 2 of $\pi/3$, $2\pi/3$, $4\pi/3$, $5\pi/3$ (allow degs/decimals) **A**1

A1

Obtain all 4 of $\frac{\pi}{3}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, $\frac{5\pi}{3}$ (exact radians only)

B1

Obtain $^{\pi/}_{4}$ (allow degs / decimals) Obtain $^{5\pi/}_{4}$ (exact radians only)

B1

SR answer only is B1 per root, max of B4 if degs / decimals

4723 Core Mathematics 3

- 1 (i) Obtain integral of form ke^{-2x} M1 any constant k different from 8 Obtain $-4e^{-2x}$ A1 or (unsimplified) equiv
- (ii) Obtain integral of form $k(4x+5)^7$ M1 any constant kObtain $\frac{1}{28}(4x+5)^7$ A1 in simplified form
 Include ... + c at least once B1 in either part
- Form expression involving attempts at y 2 (i) values and addition M1with coeffs 1, 4 and 2 present at least once Obtain $k(\ln 4 + 4 \ln 6 + 2 \ln 8 + 4 \ln 10 + \ln 12)$ A1 any constant k Use value of k as $\frac{1}{3} \times 2$ or unsimplified equiv Obtain 16.27 A1 4 or 16.3 or greater accuracy (16.27164...) (ii) State 162.7 or 163 B1 $\sqrt{1}$ following their answer to (i), maybe rounded 5
- 3 (i) Attempt use of identity for $\tan^2 \theta$ M1 using $\pm \sec^2 \theta \pm 1$; or equiv

 Replace $\frac{1}{\cos \theta}$ by $\sec \theta$ B1

 Obtain $2(\sec^2 \theta 1) \sec \theta$ A1 3 or equiv
 - (ii) Attempt soln of quadratic in $\sec \theta$ or $\cos \theta$ M1 as far as factorisation or substitution in correct formula Relate $\sec \theta$ to $\cos \theta$ and attempt at least one value of θ M1 may be implied Obtain 60°, 131.8° allow 132 or greater accuracy A1 Obtain 60°, 131.8°, 228.2°, 300° **A**1 allow 132, 228 or greater accuracy; and no others between 0° and 360° 7
- 4 (i) Obtain derivative of form $kx(4x^2 + 1)^4$ M1 any constant kObtain $40x(4x^2 + 1)^4$ A1 or (unsimplified) equiv
 State x = 0 A1 $\sqrt{3}$ and no other; following their derivative of form $kx(4x^2 + 1)^4$
- Attempt use of quotient rule (ii) M1 or equiv Obtain $\frac{2x \ln x - x^2}{1 + x^2}$ **A**1 or equiv $(\ln x)^2$ Equate to zero and attempt solution M1 as far as solution involving e Obtain e^{1/2} **A**1 4 or exact equiv; and no other; allow from ± (correct numerator of derivative) 7

4723	Ма	ark S	ch	eme	Janua
5 (i)	State 40 Attempt value of k using 21 and 80 Obtain $40e^{21k} = 80$ and hence 0.033 Attempt value of M for $t = 63$ Obtain 320	B1 M1 A1 M1	5	or equiv or equiv such as $\frac{1}{21} \ln 2$ using established formula or using exponential property or value rounding to this	Janua
(ii)	Differentiate to obtain $ce^{0.033t}$ or $40ke^{kt}$ Obtain $40 \times 0.033e^{0.033t}$ Obtain 2.64	M1 A1√ A1	1	any constant c different from 40 following their value of k allow 2.6 or 2.64 ± 0.01 or greater accuracy (2.64056)	
6 (i)	Attempt correct process for finding inverse Obtain $2x^3-4$ State 1 $\sqrt[3]{6}$ B1 3	M1 A1		maybe in terms of y so far or equiv; in terms of x now	
(ii)	State reflection in $y = x$ Refer to intersection of $y = x$ and $y = f(x)$ and hence confirm $x = \sqrt[3]{\frac{1}{2}x + 2}$	B1 B1	2	or clear equiv AG; or equiv	
(iii)	Obtain correct first iterate Show correct process for iteration Obtain at least 3 correct iterates in all Obtain 1.39 $[0 \rightarrow 1.259921 \rightarrow 1.380330 \rightarrow 1.3$ $1 \rightarrow 1.357209 \rightarrow 1.388789 \rightarrow 1.3$ $1.26 \rightarrow 1.380337 \rightarrow 1.390784 \rightarrow$ $1.5 \rightarrow 1.401020 \rightarrow 1.392564 \rightarrow 1$ $2 \rightarrow 1.442250 \rightarrow 1.396099 \rightarrow 1.3$	39078- 91512 1.391 .3918	4 4 2 684 337	allowing recovery after error following at least 3 steps; answer req to exactly 2 d.p. ⇒ 1.391684 ⇒ 1.391747 d → 1.391761 → 1.391775	
7 (i)	Refer to stretch and translation State stretch, factor $\frac{1}{k}$, in <i>x</i> direction State translation in negative <i>y</i> direction by a [SC: If M0 but one transformation complete				ogy
(ii)	Show attempt to reflect negative part in <i>x</i> -axis Show correct sketch	M1 A1		ignoring curvature with correct curvature, no pronounced 'rounding' at x-axis and no obvious maximum point	
(iii)	Attempt method with $x = 0$ to find value of Obtain $a = 14$ Attempt to solve for k Obtain $k = 3$	A1 M1 A1	4	other than (or in addition to) value and nothing else using any numerical <i>a</i> with sound pro	

M1

A1

Attempt to express x or x^2 in terms of y 8 (i)

Obtain
$$x^2 = \frac{1296}{(y+3)^4}$$

or (unsimplified) equiv

Obtain integral of form
$$k(y+3)^{-3}$$

M1 any constant k

Obtain
$$-432\pi(y+3)^{-3}$$
 or $-432(y+3)^{-3}$

A1 or (unsimplified) equiv

Attempt evaluation using limits
$$0$$
 and p

M1 for expression of form $k(y+3)^{-n}$ obtained

from integration attempt; subtraction correct way round

Confirm
$$16\pi (1 - \frac{27}{(p+3)^3})$$

A1 6 AG; necessary detail required, including

appearance of π prior to final line

State or obtain $\frac{dV}{dp} = 1296\pi (p+3)^{-4}$ (ii)

В1 or equiv; perhaps involving y

Multiply $\frac{dp}{dt}$ and attempt at $\frac{dV}{dp}$

*M1 algebraic or numerical

Substitute p = 9 and attempt evaluation

dep *M M1

Obtain $\frac{1}{4}\pi$ or 0.785

or greater accuracy

10

State $\cos 2\theta \cos \theta - \sin 2\theta \sin \theta$ 9 (i)

B1

B1

M1

Use at least one of $\cos 2\theta = 2\cos^2 \theta - 1$

and $\sin 2\theta = 2\sin\theta\cos\theta$ B1

Attempt to express in terms of $\cos \theta$ only

M1 using correct identities for $\cos 2\theta$, $\sin 2\theta$ and $\sin^2 \theta$

Obtain $4\cos^3\theta - 3\cos\theta$

A1 4 AG; necessary detail required

Either: State or imply $\cos 6\theta = 2\cos^2 3\theta - 1$ B1 (ii)

Use expression for $\cos 3\theta$ and

attempt expansion

for expression of form $\pm 2\cos^2 3\theta \pm 1$ M1

Obtain $32c^6 - 48c^4 + 18c^2 - 1$

3 AG; necessary detail required **A**1

State $\cos 6\theta = 4\cos^3 2\theta - 3\cos 2\theta$ Or: Express $\cos 2\theta$ in terms of $\cos \theta$ and attempt expansion

maybe implied

Obtain $32c^6 - 48c^4 + 18c^2 - 1$

A1 (3) AG; necessary detail required

for expression of form $\pm 2\cos^2\theta \pm 1$

Substitute for $\cos \theta$ (iii)

*M1 with simplification attempted

Obtain $32c^6 - 48c^4 = 0$

A1 or equiv

Attempt solution for c of equation

M1 dep *M

Obtain $c^2 = \frac{3}{2}$ and observe no solutions

A1 or equiv; correct work only

correct work only

Obtain c = 0, give at least three specific angles and conclude odd multiples of 90

5 AG; or equiv; necessary detail required; **A**1

4724 Core Mathematics 4

- 1 Attempt to factorise numerator and denominator
- M1 $\frac{A}{f(x)} + \frac{B}{g(x)}$; fg=6x² -24x
- Any (part) factorisation of both num and denom
- A1 Corres identity/cover-up
- Final answer = $-\frac{5}{6x}$, $\frac{-5}{6x}$, $\frac{5}{-6x}$, $-\frac{5}{6}x^{-1}$ Not $-\frac{\frac{5}{6}}{x}$
- A1

Use parts with u = x, $dv = \sec^2 x$

M1 result $f(x) + /- \int g(x) dx$

Obtain correct result $x \tan x - \int \tan x \, dx$

A1

 $\int \tan x \, dx = k \ln \sec x \text{ or } k \ln \cos x \text{ , where } k = 1 \text{ or } -1$

B1 or $k \ln |\sec x|$ or $k \ln |\cos x|$

Final answer = $x \tan x - \ln|\sec x| + c$ or $x \tan x + \ln|\cos x| + c$ A1

4

3 (i)
$$1 + \frac{1}{2} \cdot 2x + \frac{\frac{1}{2} \cdot -\frac{1}{2}}{2} \left(4x^2 \text{ or } 2x^2 \right) + \frac{\frac{1}{2} \cdot -\frac{1}{2} \cdot -\frac{3}{2}}{6} \left(8x^3 \text{ or } 2x^3 \right)$$
 M

$$= 1 + x$$
B1

...
$$-\frac{1}{2}x^2 + \frac{1}{2}x^3$$
 (AE fract coeffs)

A1 (3) For both terms

(ii)
$$(1+x)^{-3} = 1-3x+6x^2-10x^3$$

B1 or
$$(1+x)^3 = 1+3x+3x^2+x^3$$

Either attempt at their (i) multiplied by $(1+x)^{-3}$

M1 or (i) long div by $(1+x)^3$

$$1-2x\ldots$$

$$\sqrt{1+(a-3)x}$$

A1 f.t. (i) =
$$1 + ax + bx^2 + cx^3$$

... +
$$\frac{5}{2}x^2$$
....

$$\sqrt{(-3a+b+6)}x^2$$

$$\dots$$
 $-2x^3$

$$\sqrt{(6a-3b+c-10)x^3}$$

(iii)
$$-\frac{1}{2} < x < \frac{1}{2}$$
, or $|x| < \frac{1}{2}$

4 Attempt to expand $(1 + \sin x)^2$ and integrate it

*M1 Minimum of $1 + \sin^2 x$

Attempt to change $\sin^2 x$ into $f(\cos 2x)$

M1

Use $\sin^2 x = \frac{1}{2} \left(1 - \cos 2x \right)$

A1 dep M1 + M1

Use $\int \cos 2x \, dx = \frac{1}{2} \sin 2x$

A1 dep M1 + M1

Use limits correctly on an attempt at integration

dep* M1 Tolerate g $(\frac{1}{4}\pi) - 0$

$$\frac{3}{8}\pi - \sqrt{2} + \frac{7}{4}$$
 AE(3-term)F

A1 WW 1.51... → M1 A0

6

5 (i) Attempt to connect du and dx, find $\frac{du}{dx}$ or $\frac{dx}{du}$

M1 But not e.g. du = dx

Any correct relationship, however used, such as dx = 2u du A1

or $\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-1/2}$

Subst with clear reduction (≥ 1 inter step) to AG

A1 (3) WWW

(ii) Attempt partial fractions

M1

$$\frac{2}{u} - \frac{2}{1+u}$$

A1

$$\sqrt{A \ln u + B \ln (1+u)}$$

 $\sqrt{A1}$ Based on $\frac{A}{u} + \frac{B}{1+u}$

Attempt integ, change limits & use on f(u)

M1 or re-subst & use 1 & 9

$$\ln \frac{9}{4}$$
 AEexactF (e.g. 2 ln 3 –2 ln 4 + 2 ln 2)

A1 (5) Not involving ln 1

Solve 0 = t - 3 & subst into $x = t^2 - 6t + 4$

Obtain x = -5

M1

A1 (2) (-5,0) need not be quoted

N.B. If (ii) completed first, subst y = 0 into their cartesian eqn (M1) & find x (no f.t.) (A1)

(ii) Attempt to eliminate t

M1

A1

Simplify to $x = y^2 - 5$

A1 (2)

M1 Award anywhere in Que

(iii) Attempt to find $\frac{dy}{dx}$ or $\frac{dx}{dy}$ from cartes or para form

Obtain $\frac{dy}{dx} = \frac{1}{2t-6}$ or $\frac{1}{2y}$ or $(-)\frac{1}{2}(x+5)^{-\frac{1}{2}}$

If t = 2, x = -4 and y = -1

В1 Awarded anywhere in (iii)

Using their num(x, y) & their num $\frac{dy}{dx}$, find tgt eqn

A1 (5)

x + 2y + 6 = 0 AEF(without fractions)

ISW

9

M1

Attempt direction vector between the 2 given points M1

> State eqn of line using format (r) = (either end) + s(dir vec) M1 's' can be 't'

Produce 2/3 eqns containing t and s

2 different parameters

Solve giving t = 3, s = -2 or 2 or -1 or 1

A1

Show consistency

В1

M1

Point of intersection = (5,9,-1)

A1 (6)

(ii) Correct method for scalar product of 'any' 2 vectors

M1Vectors from this question

Correct method for magnitude of 'any' vector

M1Vector from this question

Use $\cos \theta = \frac{\mathbf{a.b}}{|\mathbf{a}||\mathbf{b}|}$ for the correct 2 vectors $\begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} & \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$

M1 Vects may be mults of dvs

62.2 (62.188157...) 1.09 (1.0853881)

A1 (4)

8 (i)
$$\frac{d}{dx}(y^3) = 3y^2 \frac{dy}{dx}$$

В1

Consider
$$\frac{d}{dx}(xy)$$
 as a product

M1

$$= x \frac{dy}{dx} + y$$

Tolerate omission of '6' **A**1

$$\frac{dy}{dx} = \frac{6y - 3x^2}{3y^2 - 6x}$$
 ISW AEF

A1 (4)

(ii)
$$x^3 = 2^4$$
 or 16 and $y^3 = 2^5$ or 32

*B1

Satisfactory conclusion

dep* B1

Substitute
$$\left(2^{\frac{4}{3}}, 2^{\frac{5}{3}}\right)$$
 into their $\frac{dy}{dx}$

or the numerator of $\frac{dy}{dx}$

Show or use calc to demo that num = 0, ignore denom AG A1 (4)

(iii) Substitute (a, a) into eqn of curve

M1 & attempt to state 'a = ...'

a = 3 only with clear ref to $a \neq 0$

A₁

Substitute (3,3) or (their a, their a) into their $\frac{dy}{dx}$

M1

-1 only WWW

A1 (4) from (their a, their a)

12

 $\frac{\mathrm{d}\theta}{\mathrm{d}t} = \dots$

B1

 $k(160-\theta)$

B1 (2) The 2 @ 'B1' are indep

(ii) Separate variables with $(160-\theta)$ in denom; or invert

 $\int \frac{1}{160 - \theta} d\theta = \int k, \frac{1}{k}, 1 dt$

Indication that LHS = $\ln f(\theta)$

If wrong ln, final 3@A = 0A1

RHS = kt or $\frac{1}{k}t$ or t (+ c)

A1

Subst. $t = 0, \theta = 20$ into equation containing 'c'

dep*M1

Subst $t = 5, \theta = 65$ into equation containing 'c' & 'k' dep*M1

 $c = -\ln 140$ (-4.94)

ISW

A1

A1

$$k = \frac{1}{5} \ln \frac{140}{95}$$
 (\$\approx 0.077 \text{ or } 0.078 \text{)}

Using their 'c' & 'k', subst t = 10 & evaluate θ

dep*M1

$$\theta = 96(95.535714) \left(95\frac{15}{28}\right)$$

A1 (9)

4725 Further Pure Mathematics 1

1		M1		Multiply by conjugate of denominator
1		A1 A1		Obtain correct numerator
	$\frac{7}{26} + \frac{17}{26}$ i.	A1	4	Obtain correct denominator
	26 ⁺ 26 ¹ ·		4	
2	(5 0)	B1		Both diagonals correct
	(i) $\frac{1}{10} \begin{pmatrix} 5 & 0 \\ -a & 2 \end{pmatrix}$	B1	2	Divide by correct determinant
	(-a 2)			
	(3 -2)	B1		Two elements correct
	(ii) $\begin{pmatrix} 3 & -2 \\ 2a & 6 \end{pmatrix}$	B1	2	Remaining elements correct
	(2a 6)		4	
3		M1		Express as sum of 3 terms
	$n^{2}(n+1)^{2} + n(n+1)(2n+1) + n(n+1)$	A1		2 correct unsimplified terms
	n (n+1) + n(n+1)(2n+1) + n(n+1)	A1		3 rd correct unsimplified term
	1,27	M1		Attempt to factorise
	$n(n+1)^2(n+2)$	A1ft		Two factors found, ft their quartic
		A1	6	Correct final answer a.e.f.
			6	
4		B1		State or use correct result
		M1		Combine matrix and its inverse
	$(0 \ 0)$	A1		Obtain I or I ² but not 1
		A1	4	Obtain zero matrix but not 0
	(0 0)		4	S.C. If $0/4$, B1 for $AA^{-1} = I$
5	Either	M1		Consider determinant of coefficients of LHS
		M1		Sensible attempt at evaluating any 3×3 det
	4k - 4	A1		Obtain correct answer a.e.f. unsimplified
		M1		Equate det to 0
	k = 1	A1ft	5	Obtain $k = 1$, ft provided all M's awarded
	Or	M1		Eliminate either <i>x</i> or <i>y</i>
		A1		Obtain correct equation
		M1		Eliminate 2 nd variable
		A1		Obtain correct linear equation
		A1		Deduce that $k = 1$
			5	
6	(i) Either	B1 DB1	2	Reflection, in <i>x</i> -axis
	Or	B1 DB1		Stretch parallel to <i>y</i> -axis, s.f. –1
	(ii)	B1 DB1	2	Reflection, in $y = -x$
	$\begin{pmatrix} 0 & 1 \end{pmatrix}$	D. F.		
	(iii) $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	B1 B1	2	Each column correct
	(iv)	B1B1B1	3	Rotation, 90°, clockwise about O
		ומוטוט	9	S.C. If (iii) incorrect, B1 for identifying
			9	their transformation, B1 all details correct
				then transformation, by an uctains correct

				√0.
7	$(2) 12^n \cdot (2^{n-1} \cdot 12^{n+1} \cdot (2^n))$	B1		Correct expression seen
'	(i) $13^n + 6^{n-1} + 13^{n+1} + 6^n$	M1		Attempt to factorise both terms in (i)
		A1	3	Obtain correct expression
	(ii)		3	<u>*</u>
		B1		Check that result is true for $n = 1$ (or 2)
		B1		Recognise that (i) is divisible by 7
		B1		Deduce that u_{n+1} is divisible by 7
		B1	4	Clear statement of Induction conclusion
			7	
8	(i)	M1		Expand at least 1 of the brackets
		A1	2	Derive given answer correctly
	(ii) $\alpha + \beta = 6k, \alpha\beta = k^2$	B1 B1		State or use correct values
	$\alpha - \beta = (4\sqrt{2})k$	M1		Find value of $\alpha - \beta$ using (i)
	$\alpha - \beta = (4\sqrt{2})R$	A1		Obtain given value correctly (allow if $-6k$
				used)
			4	,
	(iii) $\sum \alpha' = 6k$	B1ft		Sum of new roots stated or used
	$\alpha ! \theta = \alpha \theta (\alpha : \theta) 1$	M1		Express new product in terms of old roots
	$\alpha' \beta' = \alpha\beta - (\alpha - \beta) - 1$			Empress new product in terms of ord roots
		A1ft		Obtain correct value for new product
	$\alpha' \beta' = k^2 - (4\sqrt{2})k - 1$			Production of the control of the con
	$x^2 - 6kx + k^2 - (4\sqrt{2})k - 1 = 0$	B1ft		Write down correct quadratic equation
	$x - 6\kappa x + \kappa - (4\sqrt{2})\kappa - 1 = 0$		4	write do wir correct quadratic equation
			10	
9	(i)	M1		Use correct denominator
		A1	2	Obtain given answer correctly
	(ii)	M1		Express terms as differences using (i)
		M1		Do this for at least 1 st 3 terms
		A1		First 3 terms all correct
		A1		Last 3 terms all correct (in terms or n or r)
	$1 + \frac{1}{3} - \frac{1}{2n-1} - \frac{1}{2n+1}$	M1		Show pairs cancelling
	2n-1 $2n+1$	A1	6	Obtain correct answer, a.e.f.(in terms of n)
	(iii) $\frac{4}{3}$	B1ft	1	Given answer deduced correctly, ft their (ii)
		וועם	9	Given answer deduced correctly, it then (II)
			<u> </u>	

				· · · · · · · · · · · · · · · · · · ·
10	(i) $x^2 - y^2 = 2,2xy = \sqrt{5}$	M1		Attempt to equate real and imaginary part
		A1		Obtain both results a.e.f.
	$4x^4 - 8x^2 - 5 = 0$	M1		Eliminate to obtain quadratic in x^2 or y^2
		M1		Solve to obtain x (or y) values
	$x = \pm \frac{\sqrt{10}}{2}, y = \pm \frac{\sqrt{2}}{2}$	A1		Correct values for both x & y obtained a.e.f.
	$\pm \left(\frac{\sqrt{10}}{2} + i\frac{\sqrt{2}}{2}\right)$	A1	6	Correct answers as complex numbers
	(ii) $z^2 = 2 \pm i \sqrt{5}$	M1		Solve quadratic in z^2
	$z = \pm (\frac{\sqrt{10}}{2} \pm i \frac{\sqrt{2}}{2})$	A1		Obtain correct answers
	$2 - \pm \begin{pmatrix} 2 & \pm 1 & 2 \end{pmatrix}$	M1		Use results of (i)
		A1ft	4	Obtain correct answers, ft must include root
				from conjugate
	(iii)	B1ft	1	Sketch showing roots correctly
	(iv)	B1 B1ft		Sketch of straight line, \perp to α
		B1ft	3	Bisector
		Biii	14	Discetoi
			14	

4726 Further Pure Mathematics 2

- (i) Give $1 + 2x + (2x)^2/2$ Reasonable 3 term attempt e.g. allow $2x^2/2$ M1 Get $1 + 2x + 2x^2$ A1 SC Reasonable attempt at f'(0) and f"(0) M1 Get $1+2x+2x^2$ cao A1 Attempt to sub for e^{2x} and e^{-2x} $\ln((1+2x+2x^2))$ (ii) M1 $+(1-2x+2x^2)) =$ $ln(2+4x^2) =$ A1√ On their part (i) $\ln 2 + \ln(1 + 2x^2)$ Use of log law in reasonable expression M1 $\ln 2 + 2x^2$ A1 SC Use of Maclaurin for f'(x) and f''(x) M1 One correct Attempt f(0), f'(0) and f''(0)M1 Get cao A1 (i) $x_2 = 1.8913115$ B1 x₂ correct; allow answers which round $x_3 = 1.8915831$ B1√ For any other from their working B1 For all three correct $x_4 = 1.8915746$ (ii) $e_3/e_2 = -0.031(1)$ Subtraction and division on their values: M1allow ± $e_4/e_3 = -0.036(5)$ Or answers which round to -0.031 and -0.037**A**1 State f '(α) $\approx e_3/e_2 \approx e_4/e_3$ B1√ Using their values but only if approx. equal; allow differentiation if correct conclusion; allow gradient for f' Implicit diff. to $dy/dx = \pm (1/\cos y)$ 3 Diff. $\sin y = x$ M1 Use $\sin^2 + \cos^2 = 1$ to A.G. Clearly derived; ignore ± A1 e.g graph/ principal values
 - Use $\sin^2 + \cos^2 = 1$ to A.G. A1 B1 G

 Justify + B1 M1
 - (ii) Get $2/(\sqrt{1-4x})$ + $1/(\sqrt{1-y^2}) \, dy/dx = 0$ Find $y = \sqrt{3/2}$ Get $-2\sqrt{3/3}$
- M1 Attempt implicit diff. and chain rule; allow e.g. $(1-2x^2)$ or $a/\sqrt{(1-4x^2)}$ A1

 M1 Method leading to yAEEF; from their a above SC Write $\sin(\frac{1}{2}\pi \sin^{-1}2x) = \cos(\sin^{-1}2x)$ B1

 Attempt to diff. as above M1

 Replace x in reasonable dy/dx and

M1

A1 B1

4 (i) Let $x = \cosh \theta$ such that $dx = \sinh \theta d\theta$

 $dx = \sinh \theta d\theta$ Clearly use $\cosh^2 - \sinh^2 = 1$

- A1 Clearly derive A.G.
- (ii) Replace $\cosh^2 \theta$ Attempt to integrate their expression Get $\frac{1}{4} \sinh 2\theta + \frac{1}{2}\theta (+c)$

M1 Allow $a (\cosh 2\theta \pm 1)$ M1 Allow $b \sinh 2\theta \pm a\theta$

- Get $\frac{1}{4}\sinh 2\theta + \frac{1}{2}\theta$ (+c) Clearly replace for x to A.G.
- Condone no +c

 SC Use expo. defⁿ; three terms

 Attempt to integrate

 Get $\frac{1}{8}(e^{2\theta}-e^{-2\theta}) + \frac{1}{2}\theta (+c)$ Clearly replace for x to A.G.

 B1

- 5 (i) (a) State $(x=) \alpha$ None of roots
- B1 No explanation needed
- (b) Impossible to say
 All roots can be derived
- B1
 B1 Some discussion of values close to 1 or 2 or central leading to correct conclusion
- (ii) y (1,0.8)
- B1 Correct x for y=0; allow 0.591, 1.59, 2.31
- B1 Turning at (1,0.8) and/or (1,-0.8)
- B1 Meets x-axis at 90°
- B1 Symmetry in *x*-axis; allow
- 6 (i) Correct definitions used Attempt at $(e^x-e^{-x})^2/4+1$ Clearly derive A.G.
- B1 M1 Allow $(e^x + e^{-x})^2 + 1$; allow /2 A1
- (ii) Form a quadratic in sinh *x* Attempt to solve
- M1 Factors or formula
- Get $\sinh x = -\frac{1}{2}$ or 3
- A1 M1 On their answer(s) seen once

correct expressions

- Use correct ln expression Get $\ln(-\frac{1}{2} + \frac{\sqrt{5}}{2})$ and $\ln(3 + \sqrt{10})$
- 7 (i) $OP=3+2\cos\alpha$ $OQ=3+2\cos(\frac{1}{2}\pi+\alpha)$ M1 Any other unsimplified value $=3-2\sin\alpha$ Similarly $OR=3-2\cos\alpha$ M1 Attempt at simplification of at least two

A1

$$OS=3 + 2\sin \alpha$$

Sum = 12 A1 cao

- (ii) Correct formula with attempt at r^2 Square r correctly
- M1 Need not be expanded, but three terms if it is

Attempt to replace $\cos^2 \theta$ with $a(\cos 2\theta \pm 1)$

A1√ Need three terms

Integrate their expression $Get^{11\pi}/_4 - 1$

A1 cao

A1

M1

				January 20 January 20 Include or imply correct limits Justify inequality
47	26		Mark S	Scheme January 20 Janu
8	(i)	Area = $\int 1/(x+1) dx$ Use limits to $\ln(n+1)$	B1 B1	Include or imply correct limits
		Compare area under curve to areas of rectangles	B1	Justify inequality
		Sum of areas = $1x(\frac{1}{2} + \frac{1}{3} + + \frac{1}{(n+1)})$	M1	Sum seen or implied as 1 x y values
		Clear detail to A.G.	A1	Explanation required e.g. area of last rectangle at $x=n$, area under curve to $x=n$
	(ii)	Show or explain areas of	M1	
		rectangles above curve Areas of rectangles (as above) > area under curve	A1	First and last heights seen or implied; A.G.
	(iii)	Add 1 to both sides in (i) to make $\sum_{i=1}^{n} (1/x_i)^{n-1}$	B1	Must be clear addition
		$\sum (^{1}/r)$ Add $^{1}/_{(n+1)}$ to both sides in (ii) to make $\sum (^{1}/r)$	B1	Must be clear addition; A.G.
	(iv)	State divergent Explain e.g. $\ln(n+1) \rightarrow \infty$ as $n \rightarrow \infty$	B1 B1	Allow not convergent
9	(i)	Require denom. = 0 Explain why denom. $\neq 0$	B1 B1	Attempt to solve, explain always > 0 etc.
	(ii)	Set up quadratic in x Get $2yx^2-4x+(2a^2y+3a)=0$ Use $b^2 \ge 4ac$ for real x	M1 A1 M1	Produce quadratic inequality in y from their quad.; allow use of = or <
		Attempt to solve their inequality Get $y > \frac{1}{2a}$ and $y < \frac{-2}{a}$	M1 A1	Factors or formula Justified from graph SC Attempt diff. by quot./product rule M1 Solve $dy/dx = 0$ for two values of x M1 Get $x=2a$ and $x=-a/2$ A1 Attempt to find two y values M1 Get correct inequalities (graph used to justify them)
	(iii)	Split into two separate integrals Get $k \ln(x^2+a^2)$ Get $k_1 \tan^{-1}(x/a)$ Use limits and attempt to simplify Get $\ln 2.5 - 1.5 \tan^{-1} 2 + 3\pi/8$	M1 A1 A1 M1	Or $p\ln(2x^2+2a^2)$ k_1 not involving a
		Get III2.3 − 1.3 taii 2 ±31// 6	A1	AEEF SC Sub. $x = a \tan \theta$ and $dx = a \sec^2 \theta d\theta$ M1 Reduce to $\int p \tan \theta - p_1 d\theta$ A1 (ignore limits here) Integrate to $p \ln(\sec \theta) - p_1 \theta$ A1 Use limits (old or new) and attempt to simplify M1 Get answer above A1

4727 Further Pure Mathematics 3

1 (i) (a)	(n =) 3	B1	1	For correct n
(b)	(n =) 6	B1	1	For correct <i>n</i>
(c)	(n=) 4	B1	1	For correct <i>n</i>
(ii)	(n=) 4, 6	В1	••••	For either 4 or 6
		B1	2	For both 4 and 6 and no extras
				Ignore all <i>n</i> 8
				SR B0 B0 if more than 3 values given, even if they include 4 or 6
		5	5	
2 (i)	$\frac{\sqrt{3} + i}{\sqrt{3} - i} \times \frac{\sqrt{3} + i}{\sqrt{3} + i} = \frac{1}{2} + \frac{1}{2}i\sqrt{3}$	M1		For multiplying top and bottom by complex conjugate
	$OR \frac{\sqrt{3} + i}{\sqrt{3} - i} = \frac{2e^{\frac{1}{6}\pi i}}{2e^{-\frac{1}{6}\pi i}}$			OR for changing top and bottom to polar form
	$=(1)e^{\frac{1}{3}\pi i}$	A 1		For $(r =)$ 1 (may be implied)
		A1	3	For $(\theta =) \frac{1}{3}\pi$
				SR Award maximum A1 A0 if $e^{i\theta}$ form is not seen
(ii)	$\left(e^{\frac{1}{3}\pi i}\right)^6 = e^{2\pi i} = 1 \implies (n = 6)$	M1		For use of $e^{2\pi i} = 1$, $e^{i\pi} = -1$, $\sin k\pi = 0$ or $\cos k\pi = \pm 1$ (may be implied)
()		A1	2	For $(n =)$ 6 SR For $(n =)$ 3 only, award M1 A0
		5	5	
3 (i)	$\mathbf{n} = [2, 1, 3] \times [3, 1, 5]$	M1		For using direction vectors and attempt to
	=[2,-1,-1]	A1	2	find vector product For correct direction (allow multiples)
(ii)	$d = \frac{[5, 2, 1] \cdot [2, -1, -1]}{\sqrt{6}}$	В1		For $(\mathbf{AB} =)[5, 2, 1]$ or any vector joining lines
	$\sqrt{6}$	M1		For attempt at evaluating AB.n
		M1		For $ \mathbf{n} $ in denominator
	$=\frac{7}{\sqrt{6}}=\frac{7}{6}\sqrt{6}=2.8577$	A1	4	For correct distance
		[6	5	

4727	Mar	k Schen	For attempt to solve correct auxiliary equation For correct roots
4	$m^2 + 4m + 5 = 0$ $\Rightarrow m = \frac{-4 \pm \sqrt{16 - 20}}{2}$	M1	For attempt to solve correct auxiliary equation
	$=-2\pm i$	A1	For correct roots
	$CF = e^{-2x} (C \cos x + D \sin x)$	A 1√	For correct CF (here or later). f.t. from m AEtrig but not forms including e^{ix}
	$PI = p\sin 2x + q\cos 2x$	B1	For stating a trial PI of the correct form
	$y' = 2p\cos 2x - 2q\sin 2x$ $y'' = -4p\sin 2x - 4q\cos 2x$	M1	For differentiating PI twice and substituting into the DE
	$\cos 2x \left(-4q + 8p + 5q\right) +\sin 2x \left(-4p - 8q + 5p\right) = 65\sin 2x$	A1	For correct equation
	$ \begin{cases} 8p + q = 0 \\ p - 8q = 65 \end{cases} \qquad p = 1, q = -8 $	M1	For equating coefficients of $\cos 2x$ and $\sin 2x$ and attempting to solve for p and/or q
	$PI = \sin 2x - 8\cos 2x$	A1	For correct p and q
	$\Rightarrow y = e^{-2x} (C\cos x + D\sin x) + \sin 2x - 8\cos 2x$	B1√ 9	For using $GS = CF + PI$, with 2 arbitrary constants in CF and none in PI

		9	
5 (i)	1 dy du 1	M1	For differentiating substitution
5 (i)	$y = u - \frac{1}{x} \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{1}{x^2}$	A1	For correct expression
	$x^{3} \left(\frac{\mathrm{d}u}{\mathrm{d}x} + \frac{1}{x^{2}} \right) = x \left(u - \frac{1}{x} \right) + x + 1$	M1	For substituting y and $\frac{dy}{dx}$ into DE
	$\Rightarrow x^2 \frac{\mathrm{d}u}{\mathrm{d}x} = u$	A1 4	For obtaining correct equation AG
(ii)	METHOD 1	2.54	
(11)	$\int \frac{1}{u} du = \int \frac{1}{x^2} dx \implies \ln ku = -\frac{1}{x}$	M1 A1	For separating variables and attempt at integration For correct integration (k not required here)
	$ku = e^{-1/x} \implies k\left(y + \frac{1}{x}\right) = e^{-1/x}$	M1 M1	For any 2 of For all 3 of $\begin{cases} k \text{ seen,} \\ \text{exponentiating,} \\ \text{substituting for } u \end{cases}$
	$\Rightarrow y = Ae^{-1/x} - \frac{1}{x}$	A1 5	For correct solution AEF in form $y = f(x)$
	METHOD 2		
	$\frac{\mathrm{d}u}{\mathrm{d}x} - \frac{1}{x^2}u = 0 \implies \text{I.F. } e^{\int -1/x^2 \mathrm{d}x} = e^{1/x}$	M1	For attempt to find I.F.
	$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \Big(u \mathrm{e}^{1/x} \Big) = 0$	A1	For correct result
	$u e^{1/x} = k \implies y + \frac{1}{x} = k e^{-1/x}$	M1 M1	From $u \times I.F.=$, for k seen for substituting for u in either
			order
	$\Rightarrow y = k e^{-1/x} - \frac{1}{x}$	A1	For correct solution AEF in form $y = f(x)$

6 (i)	METHOD 1			
	Use 2 of [-4, 2, 0], [0, 0, 3], [-4, 2, 3], [4, -2, 3] or multiples	M1		For finding vector product of 2 appropriate vectors in plane <i>ACGE</i>
	$\mathbf{n} = k [1, 2, 0]$	A1		For correct n
	Use	M1		For substituting a point in the plane
	A[4, 0, 0], C[0, 2, 0], G[0, 2, 3] OR E[4, 0, 3]			
	r .[1, 2, 0] = 4	<u>A1</u>	4	For correct equation. AEF in this form
	METHOD 2 $\mathbf{r} = [4, 0, 0] + \lambda[-4, 2, 0] + \mu[0, 0, 3]$	M1		For writing plane in 2-parameter form
	$\Rightarrow x = 4 - 4\lambda, y = 2\lambda, z = 3\mu$	A1		For 3 correct equations
	x + 2y = 4	M1		For eliminating λ (and μ)
	\Rightarrow r .[1, 2, 0] = 4	A1		For correct equation. AEF in this form
(ii)	$\theta = \cos^{-1} \frac{[3, 0, -4] \cdot [1, 2, 0]}{\sqrt{3^2 + 0^2 + 4^2} \sqrt{1^2 + 2^2 + 0^2}}$	В1 \	/	For using correct vectors (allow multiples). f.t.
(11)	$\theta = \cos \frac{1}{\sqrt{3^2 + 0^2 + 4^2} \sqrt{1^2 + 2^2 + 0^2}}$	M1		from n
		M1		For using scalar product For multiplying both moduli in denominator
	$\theta = \cos^{-1} \frac{3}{5\sqrt{5}} = 74.4^{\circ}$	A1	4	For correct angle
	5√5 (74.435°,1.299)			Ç
(iii)	AM: (r =) [4, 0, 0] + t[-2, 2, 3]	 M1	·	For obtaining parametric expression for <i>AM</i>
(111)	(or [2,2,3]+t[-2,2,3])	A1		For correct expression seen or implied
	3(4-2t) - 4(3t) = 0	N/1		For finding intersection of AM with ACCE
	$(or \ 3(2-2t)-4(3+3t)=0)$	M1		For finding intersection of AM with ACGE
	$t = \frac{2}{3} (or \ t = -\frac{1}{3}) OR \ \mathbf{w} = \left[\frac{8}{3}, \frac{4}{3}, 2\right]$	A1		For correct t OR position vector
	AW:WM=2:1	A1	5	For correct ratio
		13	3	
7 (i) (a)	$x + y - a \in \mathbb{R}$	B1		For stating closure is satisfied
()	(x * y) * z = (x + y - a) * z = x + y + z - 2a	M1		For using 3 distinct elements bracketed both ways
	x*(y*z) = x*(y+z-a) = x+y+z-2a	A1		For obtaining the same result twice for associativity
				SR 3 distinct elements bracketed once,
	$x + e - a = x \implies e = a$	B1		expanded, and symmetry noted scores M1 A1 For stating identity = a
		M1		For attempting to obtain inverse of x
	$x + x^{-1} - a = a \implies x^{-1} = 2a - x$	A1	6	For obtaining inverse = $2a - x$
				OR for showing that inverses exist,
	$x + y - a = y + x - a \Rightarrow$ commutative	B1	1	where $x + x^{-1} = 2a$ For stating commutativity is satisfied, with
(b)	$x + y - u - y + x - u \rightarrow \text{Commutative}$	ועו	1	justification
(-)	$x \text{ order } 2 \Rightarrow x * x = e \Rightarrow 2x - a = e$	M1		For obtaining equation for an element of order
(c)	$\Rightarrow 2x - a = a \Rightarrow x = a = e$	A1	2	2 For solving and showing that the only solution
	$OR \ x = x^{-1} \Rightarrow x = 2a - x \Rightarrow x = a = e$			is the identity (which has order 1)
	\Rightarrow no elements of order 2			OR For proving that there are no self-inverse
			- -	elements (other than the identity)

				TOSC!
(ii)	e.g. 2+1-5 = -2 ∉ R ⁺	M1		For attempting to disprove closure
	\Rightarrow not closed	A1		For stating closure is not necessarily satisfied $(0 < x + y)$, 5 required
	e.g. $2 \times 5 - 11 = -1 \notin R^+$	M1		For attempting to find an element with no inverse
	⇒ no inverse	A1	4	For stating inverse is not necessarily satisfied (x10 required)
		13	3	
8 (i)	$\frac{1}{2} \left(\frac{1}{2} \frac$			z may be used for $e^{i\theta}$ throughout
	$\sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$	B1		For expression for $sin\theta$ seen or implied
		M1		For expanding $\left(e^{i\theta} - e^{-i\theta}\right)^6$
	$\sin^6 \theta =$			At least 4 terms and 3 binomial coefficients required.
	$-\frac{1}{64} \left(e^{6i\theta} - 6e^{4i\theta} + 15e^{2i\theta} - 20 + 15e^{-2i\theta} - 6e^{-4\theta} \right)$		-6iθ)	For correct expansion. Allow $\frac{\pm(i)}{64} \left(\cdots\right)$
	$= -\frac{1}{64} (2\cos 6\theta - 12\cos 4\theta + 30\cos 2\theta - 20)$	A1 M1		For grouping terms and using multiple angles
	$\sin^6 \theta = -\frac{1}{32} (\cos 6\theta - 6\cos 4\theta + 15\cos 2\theta - 10)$	A1	5	For answer obtained correctly AG
(ii)	$\cos^6\theta = OR\sin^6\left(\frac{1}{2}\pi - \theta\right) =$	M1		For substituting $\left(\frac{1}{2}\pi - \theta\right)$ for θ throughout
	$-\frac{1}{32}(\cos(3\pi-6\theta)-6\cos(2\pi-4\theta)+15\cos(\pi-6\theta))$	2θ) – Î	10)	
		A1		For correct unsimplified expression
	$\cos^6 \theta = \frac{1}{32} \left(\cos 6\theta + 6 \cos 4\theta + 15 \cos 2\theta + 10 \right)$	A1	3	For correct expression with $\cos n\theta$ terms AEF
(iii)	$\int_0^{\frac{1}{4}\pi} \frac{1}{32} \left(-2\cos 6\theta - 30\cos 2\theta \right) d\theta$	B1√		For correct integral. f.t. from $\sin^6 \theta - \cos^6 \theta$
	$=-\frac{1}{16}\left[\frac{1}{6}\sin 6\theta + \frac{15}{2}\sin 2\theta\right]_{0}^{\frac{1}{4}\pi}$	M1		For integrating $\cos n \theta$, $\sin n \theta o r e^{in\theta}$
		A1ν	1	For correct integration. f.t. from integrand
	$=-\frac{11}{24}$	A1	4	For correct answer www
	- :			

4728 Mechanics 1

1 (i)		M1	Uses CoLM
	0.5x6 = 0.5x0.8 + 4m	A1	
	m = 0.65	A1 [3]	If g used throughout, possible 3 marks
		M1	After momentums opposite signs
(ii)	0.5x6 = -0.5x0.8 + 4m	A1	0
	m = 0.85	A1 [3]	If g used throughout, 0 marks
2 (i)	T = 400 N	B1	Order immaterial
	D = 400 + 900	M1	Or T + 900; sign correct
	= 1300 N	A1	
(ii)		[3]	(Award M marks even if g included in ma terms.
			M marks require correct number forces)
		M1	Uses N2L one object only
	$500 \times 0.6 = T - 400$	A1	
	T = 700 N	A1 M1	Uses N2L other object
	1250x0.6 = D - 900 - 700	Alft	ft cv(T from (ii)); allow T instead of its value
	D = 2350 N	A1	(),,
	OR		
	(500 1250) ₂₀ (5 - D. 400, 000	M1 A1	Uses N2L for both objects
	(500 + 1250)x0.6 = D - 400 - 900 D = 2350 N	A1	
	250011	[6]	
3 (i)	5cos30 or 5 sin 60 or 4.33	B1	Order immaterial, accept +/ May be awarded in
	5cos 60 or 5sin30 or 2.5	B1	(ii) if no attempt in (i)
		[2]	
(ii)	7.422 (-2.67) and 0.25 (-6.5)	M1*	Subtracts either component from either force
	7-4.33 (= 2.67) and 9 - 2.5 (= 6.5) $R^2 = 2.67^2 + 6.5^2$	A1 D*M	
	R = 7.03	1	3sf or better
	$\tan\theta = 6.5/2.67$	A1	Valid trig for correct angle
	$\theta = 67.6, 67.7 \text{degrees}$	D*M	3sf or better
		1 A1	
		[6]	
4 (i)	20cos 30	M1	Resolves 20 (accept 20 sin30)
	$20\cos 30 = 3a$	M1	Uses N2L horizontally, accept g in ma term
	$a = 5.77 \text{ ms}^{-2}$	A1 [3]	
(ii)		M1	Resolves vertically (accept -, cos if sin in i);
	$R = 3x9.8 + 20 \sin 30 (= 39.4)$	A1	correct no. terms
	$F = 20\cos 30 \ (= 17.3)$	B1	Correct (Neither R nor F need be evaluated)
	$\begin{vmatrix} 17.3 = 39.4 \mu \\ \mu = 0.44 \end{vmatrix}$	M1 A1	Uses $F = \mu R$
	μ = 0. 14 	[5]	
		<u> </u>	

4728	Mark	Scheme	January 20. Attempt at integration Award if c omitted
5 (i)	$V = \int 0.8t dt$ $v = 0.8t^{2} / 2 (+c)$ $t = 0, v = 13, (c = 13)$ $v = 0.4x 6^{2} (+c)$ $v = 27.4 \text{ ms}^{-1}$	M1* A1 M1 D*M1 A1 [5]	Attempt at integration Award if c omitted
(ii)	$s = \int 0.4t^{2} (+c)dt$ $s = 0.4t^{3}/3 + 13t (+k)$ $t=0, s=0, (k=0)$ $s = 0. 4x6^{3}/3 + 13x6$ $s = 106.8 \text{ m}$	M1* A1ft M1 D*M1 A1 [5]	Attempt at integration of v(t) ft cv(v(t) in (i)) Allow if k=0 assumed. Accept 107 m.
(iii)	Fig. 2 Fig. 1 has zero initial velocity/gradient Fig. 3 does not have a increasing velocity/gradient	B1 [1] B1 B1 [2]	
6 (i) a b	$2.5 = 9.8t^{2}/2$ $t = 0.714 \text{ s or better or } 5/7$ $v^{2} = 2x9.8x2.5 OR v = 9.8 \times 0.714$ $v = 7 \text{ ms}^{-1} \text{ or } 6.99 \text{ or art } 7.00$	M1 A1 [2] M1 A1 [2]	Uses $s = 0 +/- gt^2/2$ Not awarded if - sign "lost" Uses $v^2 = 0 +/-2gs$ or $v = u +/- gt$ Not awarded if - sign "lost"
(ii)	R = $2x9.8\sin60$ (= $16.97 = 17$) F = $0.2x16.97$ (= 3.395 or 3.4) Cmpt weight = $2x9.8\cos60$ (= 9.8) 2a = 9.8 - 3.395 $a = 3.2 \text{ ms}^2$ Distance down ramp = 5 m $v^2 = 2x3.2x5$ v = 5.66 or 5.7	B1 M1 A1ft B1 M1 A1ft B1 M1 A1ft	With incorrect angle, e.g $R = 2x9.8\cos 60 (=9.8) B0$ F = 0.2x9.8 (=1.96) M1A1 Cmpt wt = $2x9.8\sin 60 (=16.97) B0$ 2a = 16.97 - 1.96 M1 a = 7.5 A1 ft cv(R and Cmpt weight) $v^2 = 2x7.5x5$ v = 8.66 or $8.7 A1$ ft cv($ (10a)$)
7 (i)	$p = 4 - 2x0.4 (= 3.2)$ $q = 1 - 2x0.4 (= 0.2)$ $0.7x3.2 - 0.3x0.2 = (1x)v$ $v = 2.18 \text{ ms}^{-1}$	M1 A1 A1 M1 A1 A1 A1	Use of $v = u - 0.4t$ Accept $q = -0.2$ from $-1+2*0.4$ Uses CoLM on reduced velocities

(ii)		B1	Straight line with larger y intercept slopes
a			towards t axis, but does not reach it.
		B1	Straight line with negative y intercept slopes
			towards t axis,
		B1	and gets to t axis before other line ends.
		[3]	SR if t=2 in ii give B1 if line stops before axis
b	0 = 1 - 0.4t	M1	Finds when Q comes to rest (any method)
	t = 2.5 s	A1	
		M1	Uses $s = ut - 0.4t^2/2$
	$P = 4x3 - 0.5x0.4x3^2$	A1	
	$Q = 1x2.5 - 0.5x0.4x2.5^2$	A1	(nb $0^{(2)} = 1^{(2)} - 0.4Q^2/2$ B1; convincing
	PQ = 10.2 + 1.25 = 11.45 m	A1	evidence (graph to scale, or calculation that Q
		[6]	comes to rest and remains at rest at t less than
			3, M1A1;graph A1 needs –ve v intercept)
			SR if t=2 in iib, allow M1 for s= ut - $0.4t^2/2$
			And A1 for PQ=8.4

Alternative for Q3 where 7 N and 9N forces combined initially

3 (i)	5cos30 or 5 sin 60 or 4.33	B1	Order immaterial, accept +/ May be awarded
	5cos 60 or 5sin30 or 2.5	B1	in (ii) if no attempt in (i)
		[2]	
(ii)	` '		Z is resultant of 7N and 9N forces only
	cos(angle of Z with y axis) = 9/11.4017		
	angle of Z with y axis = 37.8746		
	Angle opposite R in triangle of forces =		R is resultant of all 3 forces
	180 -(37.8746+90+30)	M1*	Complete method
	= 22.125 (Accept 22)	A1	_
	$R^2 = 5^2 + 11.4017^2 - 2x5x11.4017\cos 22.125$	D*M1	Cosine rule to find R
	R (= 7.0269) = 7.03 N	A1	
	$11.4017^2 = 5^2 + 7.0269^2 - 2x5x7.0269\cos A$		Or Sine Rule. A is angle between R and 5N
	(A = 142.33)		forces
	Angle between R and y axis = $142.33-30$ -	D*M1	
	90 (=22.33)		Complete method
	$\theta = 90-22.33 = 67.7 \text{ degrees}$	A1	θ is angle between R and x axis
		[6]	-

4729 Mechanics 2

1	$(20 \sin \theta)^2 = 2 \times 9.8 \times 17$	M1	or B2 for
		A1	$\max ht = v^2 \sin^2 \theta / 2g$
	$\sin\theta = \sqrt{(2x9.8x17) \div 20}$	M1	subst. values in above
	$\theta = 65.9^{\circ}$	A1 4	4

2	$\overline{x} = 8$	B1	
	$T \sin 30^{\circ} x 12 = 8 x 2 x 9.8$	M1	ok if g omitted
		A1 ft	ft their \bar{x}
	T = 26.1	A1 4	4

3 (i)	140 x X = 40 x 70	M1	
	X = 20 N	A1	
	at F 20 N to the right	B1	inspect diagram
	at G 20 N to the left	B1 4	SR B1 for correct directions only
(ii)	$d = (2x40\sin\Pi/2) \div 3\Pi/2$	M1	must be radians
		A1	
	₫ = 17.0	A1	16.98 160/3Π (8/15Π m)
	$70\overline{y} = 100x60 + 217 \times 10$	M1	
		A1 ft	ft 200 + their đ or 2 + their đ (m)
	$\overline{y} = 117$	A1 6	116.7 10

4 (i)	$P/10 - 800 \times 9.8 \sin 12^{\circ} - 100 k = 800 \times 0.25$	M1	$P/10 = D_1 \text{ ok}$
		A1	D_1 ok
	$P/20 - 400k = 800 \times 0.75$	M1	$P/20 = D_2 \text{ ok}$
		A1	$D_1 = 2D_2$ needed for this A1
	solving above	M1	
	k = 0.900	A1	AG 0.9000395
	$P = 19\ 200$	A1 7	or 19.2 kW (maybe in part (ii))
(ii)	$0.9 v^2 = 28 800/v$	M1	ok if 19200/v
	solving above	M1 *	$(v^3 = 32\ 000)$
	$v = 31.7 \text{ m s}^{-1}$	A1 3	10

5 (i)	0.8 S	B1	vert comp of S
	0.6 T	B1	vert comp of T
	$S\cos\alpha = T\cos\beta + 0.2 \times 9.8$	M1	
	0.8 S = 0.6 T + 1.96 aef	A1 4	AG $4S = 3T + 9.8$
(ii)	0.6 S	B1	
	0.8 T	B1	
	$0.2 \times 0.24 \times 8^2$	B1	3.072 384/125
	$S\sin\alpha + T\sin\beta = 0.2 \times 0.24 \times 8^2$	M1	must be $mr\omega^2$
	6S + 8T = 30.72	A1	aef
	eliminate S or T	M1	
	S = 3.4 N	A1	3.411
	T = 1.3 N	A1 8	1.282

6 (i)	$x = v\cos\theta t$	B1	
	$y = v \sin\theta t - \frac{1}{2} x 9.8 t^2$	B1	or g
	substitute $t = x/v\cos\theta$	M1	
	$y = x \tan\theta - 4.9x^2/v^2 \cos^2\theta$	A1 4	AG
(ii)	Sub y = $-h$, x = h , v = 14, θ = 30	M1	signs must be correct
	$-h = h/\sqrt{3} - h^2/30$	A1	aef
	solving above	M1	
	h = 47.3	A1 4	
(iii)	$v_v^2 = (14\sin 30^\circ)^2 - 2x9.8x(-47.3)$	M1	$14\cos 30^{\circ} \text{ t}=47.3 \text{ ft } \& \text{ v}_{\text{v}}=14\sin 30^{\circ}-9.8 \text{ t}$
	(double negative needed) ft their -47.3	A1 ft	$t = 3.90$ (or dy/dx=1/ $\sqrt{3}$ - x/15 etc ft)
	$v_{\rm v} = \pm 31.2$	A1	$v_v = \pm 31.2 \text{ (tan}\alpha = 1/\sqrt{3} - 47.3/15)$
	tan ⁻¹ (31.2/14cos30°)	M1	tan ⁻¹ (31.2/14cos30°)
	α = 68.8° below horiz/21.2° to d'vert.	A1 5	68.8°/
(iv)	$\frac{1}{2}$ mx14 ² + mx9.8x47.3 = $\frac{1}{2}$ mv ²	M1	ft $(12.1^2 + 31.2^2)$
	v = 33.5	A1 2	33.5 15

7 (i)	$p = 4 \text{ m s}^{-1}$	B1	D'a first speed
7 (i)	p – 4 m s	DI	P's first speed
	$0.8 = 0.2p_1 + 0.3q_1$	M1	
		A1	
	$0.5 = (q_1 - p_1)/4$	M1	
		A1	
	solving above	M1	
	$q_1 = 2.4$	A1	
			Q's first speed
	$p_1 = 0.4$ 2/5	A1 8	
			may be in (ii). SR 1 for both negative
(ii)	$0.8 = 0.2p_2 + 0.3q_2$	M1	
		A1	
	$0.5 = (p_2 - q_2)/2$	M1	
		A1	
	solving above	M1	
	$p_2 = 2.2$ 11/5	A1	
	$q_2 = 1.2$ 6/5	A1 7	
(iii)	$R = 0.3 \times 1.2^2 / 0.4$	M1	
	R = 1.08 N	A1 2	17

4730 Mechanics 3

1 (i)	For triangle sketched with sides (0.5)2.5 and		
	$(0.5)6.3$ and angle θ correctly marked OR		
	Changes of velocity in i and j directions		
	$2.5\cos\theta - 6.3$ and $2.5\sin\theta$, respectively.	B1	May be implied in subsequent working.
	For sides 0.5x2.5, 0.5x6.3 and 2.6 (or 2.5, 6.3		
	and 5.2) OR		
	$-2.6\cos\alpha = 0.5(2.5\cos\theta - 6.3)$ and		
	$2.6\sin\alpha = 0.5(2.5\sin\theta)$	B1ft	May be implied in subsequent working.
	$5.2^2 = 2.5^2 + 6.3^2 - 2x2.5x6.3\cos\theta$ OR		
	$2.6^{2} = 0.5^{2} \{ (2.5\cos\theta - 6.3)^{2} + (2.5\sin\theta)^{2} \}$		For using cosine rule in triangle or eliminating
	$\cos \theta = 0.6$	M1	lpha .
	$\cos \theta = 0.0$	A1	AG
		[4]	
(ii)			For appropriate use of the sine rule or
			substituting for θ in one of the above
		M1	equations in θ and α
	$\sin \alpha = 2.5 \times 0.8 / 5.2 \qquad OR$		
	$-2.6\cos\alpha = 0.5(2.5\times0.6 - 6.3)$	A1	
		M1	For evaluating $(180 - \alpha)^{\circ}$ or $(\pi - \alpha)^{\circ}$
	Impulse makes angle of 157° or 2.75° with		
	original direction of motion of P.	A1	
		[4]	SR (relating to previous 2 marks; max 1 mark
			out of 2)
	I and the second	1	$\alpha = 23^{\circ} \text{ or } 0.395^{\circ}$ B1

2 (i)	[70x2 = 4X - 4Y]	M1	For taking moments about A for AB (3 terms
			needed)
	X - Y = 35	A1	
		[2]	
(ii)	[110x3 = -4X + 6Y]	M1	For taking moments about C for BC (3 terms
			needed)
	2X - 3Y + 165 = 0	A1	AG
		[2]	
(iii)		M1	For attempting to solve for X and Y
			ft any (X, Y) satisfying the equation given in
	X = 270, Y = 235	A1ft	(ii)
		M1	For using magnitude = $\sqrt{X^2 + Y^2}$
	Magnitude is 358N	A1ft	ft depends on all 4 Ms
		[4]	

3 (i)	$[T_A = (24x0.45)/0.6, T_B = (24x0.15)/0.6]$ $T_A - T_B = 18 - 6 = 12 = W \rightarrow P \text{ in equil'm.}$	M1 A1 [2]	For using $T = \lambda x/L$ for PA or PB
(ii)	Extensions are $0.45 + x$ and $0.15 - x$ Tensions are $18 + 40x$ and $6 - 40x$	B1 B1 [2]	AG From T = λ x/L for PA and PB
(iii)	[12 + (6 - 40x) - (18 + 40x) = 12 \ddot{x} /g] \ddot{x} = -80gx/12 \rightarrow SHM Period is 0.777s	M1 A1 A1 [3]	For using Newton's second law (4 terms required) AG From Period = $2\pi \sqrt{12/(80 g)}$
(iv)	$[v_{\text{max}} = 0.15 \sqrt{80 \ g \ / 12}$ or $v_{\text{max}} = 2 \ \pi \ x0.15/0.777$ or $\frac{1}{2} (12/\text{g}) v_{\text{max}}^2 + \text{mg}(0.15)$ $+24 \{0.45^2 + 0.15^2 - 0.6^2\} / (2x0.6) = 0]$ Speed is 1.21ms^{-1}	M1 A1 [2]	For using $v_{max} = An$ or $v_{max} = 2\pi A/T$ or conservation of energy (5 terms needed)

	T		
4 (i)	Loss in PE = $mg(0.5\sin\theta)$	B1	
			For using KE gain = PE loss (3 terms required)
	$[\frac{1}{2} \text{ mv}^2 - \frac{1}{2} \text{ m3}^2 = \text{mg}(0.5 \sin \theta)]$	M1	AG
	$v^2 = 9 + 9 \operatorname{8sin} \theta$	A1	
	V = 9 + 9.0SIII <i>U</i>	[3]	
(ii)	$a_r = 18 + 19.6\sin\theta$	B1	Using $a_r = v^2/0.5$
			For using Newton's second law tangentially
	$[ma_t = mg \cos \theta]$	M1	
	$a_1 = 9.8\cos\theta$	A1	
	u ₁ 7.00050	[3]	
(iii)			For using Newton's second law radially (3
	$T - \operatorname{mg} \sin \theta = \operatorname{ma}_{r}$	M1	terms required)
	$T - 1.96\sin\theta = 0.2(18 + 19.6\sin\theta)$	A1	* ′
	$T = 3.6 + 5.88\sin\theta$	A1	AG
		B1	
	$\theta = 3.8$	[4]	
		[ד]	

5	Initial i components of velocity for A and B		
	are 4ms ⁻¹ and 3ms ⁻¹ respectively.	B1	May be implied.
		M1	For using p.c.mmtm. parallel to l.o.c.
	3x4 + 4x3 = 3a + 4b	A1	
		M1	For using NEL
	0.75(4-3) = b - a	A1	-
		M1	For attempting to find a
	a=3	A1	Depends on all three M marks
	Final j component of velocity for A is 3ms ⁻¹	B1	May be implied
		M1	For using $tan^{-1}(v_j/v_i)$ for A
	Angle with l.o.c. is 45° or 135°	A1ft	ft incorrect value of a $(\neq 0)$ only
		[10]	
			SR for consistent sin/cos mix (max 8/10)
			3x3 + 4x4 = 3a + 4b and
			b - a = 0.75(3 - 4)
			M1 M1 as scheme and A1 for both equ's
			a = 4 M1 as scheme A1
			j component for A is 4ms ⁻¹ B1
			Angle $tan^{-1}(4/4) = 45^{\circ} M1$ as scheme A1

6(i)	Initial speed in medium is $\sqrt{2g \times 10}$ (= 14)	B1	
	$[0.125 \text{dv/dt} = 0.125 \text{g} - 0.025 \text{v}]$ $\int \frac{5 dv}{5g - v} = \int dt$	M1 M1	For using Newton's second law with a = dv/dt (3 terms required) For separating variables and attempt to integrate
	$-5 \ln(5g - v) = t (+A)$ $[-5 \ln 35 = A]$ $t = 5 \ln 35/(49 - v)$ $v = 49 - 35e^{-0.2t}$	A1 M1 A1 M1 A1 [8]	For using $v(0) = 14$ For method of transposition AG
(ii)	$x = 49t + 175e^{-0.2t} (+B)$ $[x(3) = (49x3 + 175e^{-0.6}) - (0 + 175)]$ Distance is 68.0m	M1 A1 M1 A1	For integrating to find $x(t)$ For using limits 0 to 3 or for using $x(0) = 0$ and evaluating $x(3)$

4730) Mark S	Scheme	Accept 0.8gx if gain in KE is ½ 0.8(v² – 19.6)	THIS STATES
7(i)	Gain in EE = $20x^2/(2x2)$ Loss in GPE = $0.8g(2 + x)$ [$\frac{1}{2}0.8v^2 = (15.68 + 7.84x) - 5x^2$] $v^2 = 39.2 + 19.6x - 12.5x^2$	B1 B1 M1 A1 [4]	Accept 0.8gx if gain in KE is $\frac{1}{2}$ 0.8(v^2 – 19.6) For using the p.c.energy AG	Md.co.
(ii)	(a) Maximum extension is 2.72m	M1 A1 [2]	For attempting to solve $v^2 = 0$	
	(b) $[19.6 - 25x = 0, v^2 = 46.8832 - 12.5(x - 0.784)^2]$	M1	For solving $20x/2 = 0.8g$ or for differentiating and attempting to solve $d(v^2)/dx = 0$ or $dv/dx = 0$ or for expressing v^2 in the form $c - a(x - b)^2$.	
	x = 0.784 or $c = 46.9[v_{max}^2 = 39.2 + 15.3664 - 7.6832]Maximum speed is 6.85 \text{ms}^1$	A1 M1 A1	For substituting $x = 0.784$ in the expression for v^2 or for evaluating \sqrt{c}	
	(c) $\pm (0.8g - 20x/2) = 0.8a$	[4] M1	For using Newton's second law (3 terms required) or $a = v \frac{dv}{dx}$	
	or $2v dv/dx = 19.6 - 25x$ $a = \pm (9.8 - 12.5x)$ or $\ddot{y} = -12.5y$ where $y = x - 0.784$	A1 A1		
	$[a _{max} = 9.8 - 12.5x2.72 $ or $ \ddot{y} _{max} = -12.5(2.72 - 0.784]$ Maximum magnitude is $24.2m\mathring{s}^2$	M1 A1 [5]	For substituting $x = ans(ii)(a)$ into $a(x)$ or $y = ans(ii)(a) - 0.784$ into $\ddot{y}(y)$	

4732 Probability & Statistics 1

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding. Penalise over-rounding only once in <u>paper</u>.

1 (i)	$0.2^2 + 0.7 \times 0.1 \times 2$	M2	0.2^2 or 0.7×0.1 : M1
	= 0.18 AG	A1 3	no errors seen NB $2 \times 0.9 \times 0.1 = 0.18$ M0A0
(ii)	$0.28 + 2 \times 0.18 + 3 \times 0.04 + 4 \times 0.01$	M1	≥ 2 terms correct (excl 0×0.49)
			÷ 5 (or 4 or 10 etc): M0
	= 0.8 oe	A1	,
	$0.28 + 2^2 \times 0.18 + 3^2 \times 0.04 + 4^2 \times 0.01$	M1	≥ 2 terms correct (excl $0^2 \times 0.49$)
	- "0.8" ²	M1	dep +ve result
	= 0.88 oe	A1 5	cao
			$\Sigma(x-\mu)^2$: 2 terms: M1; 5 terms M2
			$0.8^{2} \times 0.49 + 0.2^{2} \times 0.28 + 1.2^{2} \times 0.18 + 2.2^{2} \times 0.04 + 3.2^{2} \times 0.01$
			SC Use original table, 0.4:B1 0.44: B1
Total		8	
2(i)(a)	$8736.9 - \frac{202 \times 245.3}{}$		correct sub in any correct formula for b
	$\frac{6736.7}{7} = \frac{1658.24}{7}$	M1	$eg \frac{236.8921}{210.1249}$
	$\frac{202^2}{1470.86}$		210.1249
	$\frac{8736.9 - \frac{202 \times 245.3}{7}}{7300 - \frac{202^2}{7}} \text{ or } \frac{1658.24}{1470.86}$		
	= 1.127 $(= 1.13AG)$	l	
	,	A1 2	must see 1.127; 1.127 alone: M1A1
(b)	$y - \frac{245.3}{7} = 1.13(x - \frac{202}{7})$	M1	or $a = \frac{245.3}{7} - 1.13 \times \frac{202}{7}$
	y = 1.1x + 2.5 (or 2.4) or $y = 1.13x + 2.43$	A1 2	2 sfs suff.
	·		(exact: $y = 1.127399.x + 2.50934$)
(ii)(a)	$(1.1() \times 30 + 2.5()) = 35.5 \text{ to } 36.5$	B1f 1	
(b)	$(1.1() \times 100 + 2.5()) = 112.4 \text{ to } 115.6$	B1f 1	
(iii)	(a) Reliable	B1	Both reliable: B1 (a) more reliable than (b) B1
			because (a) within data
	(b) Unreliable because extrapolated	B1 2	or (b) outside data B1
			Ignore extras
Total		8	
3(i)(a)	Geo stated	M1	or impl. by $(^{7}/_{8})^{n}(^{1}/_{8})$ or $(^{1}/_{8})^{n}(^{7}/_{8})$ alone
	$(\frac{7}{8})^2(\frac{1}{8})$	M1	
	⁴⁹ / ₅₁₂ or 0.0957 (3 sfs)	A1 3	
(b)	$(^{7}/_{8})^{3}$ alone	M2	or $1-(\frac{1}{8}+\frac{7}{8}) + (\frac{7}{8})^2 \times \frac{1}{8}$: M2
			one term incorrect, omit or extra: M1
			$1 - (^{7}/_{8})^{3}$ or $(^{7}/_{8})^{2}$ alone: M1
	$^{343}/_{512}$ or 0.670 (3 sfs) allow 0.67	A1 3	
(ii)	8	B1 1	
(iii)	Binomial stated or implied	M1	eg by $(^{7}/_{8})^{a}(^{1}/_{8})^{b}$ $(a+b=15, a,b \neq 1)$, not just $^{n}C_{r}$
	$^{15}\text{C}_2(^{7}/_8)^{13}(^{1}/_8)^2$	M1	
	= 0.289 (3 sfs)	A1 3	
Total		10	
4 (i)	1 2 3 4 5 or 5 4 3 2 1	M1	attempt ranks
	3 5 4 1 2 3 1 2 5 3	A1	correct ranks
	$\Sigma d^2 = 32$	M1dep	S_{xx} or $S_{yy} = 55 - 15^2 / _5 (=10)$ or $S_{yy} = 39 - 15^2 / _5 (=-6)$
	$1 - \frac{6 \times 32}{5(25-1)}$	M1dep	$-\frac{6}{\sqrt{(10\times10)}}$
	= - 0.6	A1 5	

(ii)	1 & 3	Blind	ft if -1 < (i) < -0.9, ans 1 & 2
	Largest $neg r_s$ or large $neg r_s$ or strong $neg corr'n$ or close(st) to -1 or lowest r_s	B1dep	NOT: furthest from 0 or closest to ±1 little corr'n most disagreement
Total		7	

5 (i) (ii)	68 75 – 59 = 16 Unaffected by outliers or extremes (allow less affected by outliers) sd can be skewed by one value	B1 M1 A1 B1	3	attempt 6 th & 18 th or 58-60, 74-76 & subtr must be from 75 – 59 NOT: by anomalies or freaks easier to calculate
(iii)	Shows each data item, retains orig data can see how many data items can find (or easier to read) mode or modal class can find (or easier to read) frequs can find mean Harder to read med (or Qs or IQR) Doesn't show med (or Qs or IQR) B&W shows med (or Qs or IQR) B&W easier to compare meds	B1	2	NOT: shows freqs shows results more clearly B&W does not show freqs NOT: B&W easier to compare B&W shows spread or variance or skew B&W shows highest & lowest Assume in order: Adv, Disadv, unless told Allow disadv of B&W for adv of S&L & vice versa Ignore extras
(iv)	m = 68.1 NOT by restart $sd = 9.7$ (or same) NOT by restart	B1 B1	2	Restart mean or mean & sd: 68.1 or 68.087 & 9.7 or 9.73 B1 only
Total		8	3	

6 (i) (a)	8!	M1		Allow ⁴ P ₄ & ³ P ₃ instea
	= 40320	A1 2		3! & 4! thro'out Q6
(b)	$\frac{4}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2}$	M1	4! × 4! ÷ 8!	$4! \times 4! + 4! \times 4!$
	$\times 2$	M1dep	× 2	÷ 8!
			allow 1 – abov	e for M1 only
	$= \frac{1}{35}$ or 0.0286 (3 sfs)	A1 3	oe, eg $^{1152}/_{40320}$	
(ii)(a)	4! × 4!	M1	allow 4! × 4! × 2: 1	M1
	= 576	A1 2		
(b)	$\frac{1}{1}$ or 0.0625	B1 1		
(c)	Separated by 5 or 6 qus stated or illus	M1	allow 5 only or 6 on	•
	, , ,			impl by next M2 or M1
	$\frac{1}{4} \times \frac{1}{4} \times 3 \text{ or } \frac{1}{16} \times 3$	M2	$3! \times 3! \times 3$	
	$\binom{1}{4} \times \binom{1}{4}$ or $\binom{1}{16}$ alone or \times (2 or 6):		$(3! \times 3! \text{ alone o})$	$r \times (2 \text{ or } 6)$; or $(3! + 3!) \times 3$: M1)
	M1)			(÷ 576)
	3, 0,107	A1 4		
	³ / ₁₆ or 0.1875 or 0.188		correct ans, but clea	rly B, J sep by 4: M0M2A0
			1- P(sep by 0, 1, 2, 3) 1- $\binom{1}{4}$ + $\binom{1}{4}$	3, (4)) M1
				$(4^{\times 1}/2)$ $(4^{\times 1}/4^{+3}/4^{+1}/4^{+1}\times 1/4^{+3}/4^{+1}/4)$ M2
			(one omit: M1)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Total		12		

7 (i)	Binomial	B1		
	n = 12, p = 0.1	B1		B(12, 0.1): B2
	Plates (or seconds) independent oe	B1		NOT: batches indep
	Prob of fault same for each plate oe	B1	4	Comments must be in context
				Ignore incorrect or irrelevant
(ii)(a)	$0.9744 - 0.8891 \text{ or } {}^{12}\text{C}_3 \times 0.9^9 \times 0.1^3$	M1		
	= 0.0852 or 0.0853 (3 sfs)	A1	2	
(b)	$1 - 0.2824$ or $1 - 0.9^{12}$	M1		allow $1 - 0.6590$ or $1 - 0.9^{11}$
	=0.718 (3 sfs)	A1	2	
(iii)	"0.718" and 1 – "0.718" used	B1		ft (b) for B1M1M1
	$(1-0.718)^4 + 4(1-0.718)^3 \times 0.718$			
	$+ {}^{4}\text{C}_{2}(1-0.718)^{2} \times 0.718^{2}$	M2		M1 for any one term correct
				(eg opp tail or no coeffs)
				1 – P(3 or 4) follow similar scheme M2 or M1
				1 - correct wking (= 0.623) B1M2
	= 0.317 (3 sfs)	A1	4	cao
Total		12		

January 20. Days

0.00	1, 2	3.60		<u> </u>		60,
8 (i)	$\left(\frac{1}{6} + 3 \times (\frac{1}{6})^2\right)$	M2		or $3 \times (\frac{1}{6})^2$ or $\frac{1}{6} + (\frac{1}{6})^2$ or $\frac{1}{6} + 2(\frac{1}{6})^2$ or $\frac{1}{6} + 4(\frac{1}{6})^2$		40
				or $\frac{1}{6} + 4(\frac{1}{6})^2$	M1	Cloud Co
	$ = {}^{1}/_{4}$	A1	3			
(ii)	$\frac{1}{3}$	B1	1			
(iii)	3 routes clearly implied	M1				
, ,	out of 18 possible (equiprobable) routes	M1		or $\frac{1}{3} \times \frac{1}{6} \times 3$	M2	
				or $\frac{1}{3} \times \frac{1}{6}$ or $\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times 3$ or $\frac{1}{3} \times \frac{1}{3} \times 3$ or $\frac{1}{4}$	$-\frac{1}{6}$	M1
				but $^{1}/_{6} \times ^{1}/_{6} \times 2$	M0	
				$\left(\frac{1}{6}\right)^2 \times 3 \qquad \frac{1}{4} - \frac{1}{6} \qquad \frac{1}{2} \times \frac{1}{6}$		
				$\frac{\left(\frac{1}{6}\right)^2 \times 3}{\frac{1}{2}}$ or $\frac{\frac{1}{4} - \frac{1}{6}}{\frac{1}{2}}$ or $\frac{\frac{1}{2} \times \frac{1}{6}}{\frac{1}{2}}$ oe	M2	
				or $\frac{P(4\&twice)}{P(twice)}$ stated or $\frac{prob}{\underline{1}}$	M1	
				$\frac{1}{2}$		
				Whatever 1 st , only one possibility on 2 nd	M2	
				¹ / ₆ , no wking M1N	/1A1	
	1,			$\frac{1}{1}$ ₁₂ , no wking	M0	
	1/6		_	/		
		A1	3			
Total		7				

Total 72 marks

4733 Probability & Statistics 2

1 $U \sim B(800, 0.005) \approx Po(4)$ B1 $Po(np)$ stated or im	plied
	1 term, e.g. 0.7851, 0 .9489, 0.1107, not 1–
= 0.8893 A1 Answer 0.889 or a.	r.t. 0.8893
n > 50/large, $np < 5/p$ small B1 4 Both conditions	
2 $\frac{23.625-23}{5}=2$ M1 Standardise with $\sqrt{2}$	η , allow \sqrt{f} errors
$\frac{1}{5/\sqrt{n}} = 2$ A1 Equate to 2 or a.r.t.	
$\sqrt{n} = 16$ M1 Solve for \sqrt{n} , needs	
n = 256 A1 4 256 only, allow fro	
3 (i) (a) $e^{-0.42}$ M1 Correct formula for	
= 0.657 A1 P(0) art 0.657	
(b) $0.42 e^{-0.42} = 0.276$ A1 3 P(1), a.r.t. 0.276	
(ii) Po(2.1): M1 Po(2.1) stated or in	nplied
	e.g. 0.8386 or 0.6496 or 0.9379 or
	ver, in range [0.161, 0.162]
(iii) B2 2 At least 3 separate	
Allow histogram. A	
P(0) < P(1) but oth	
Curve: B1	
[no hint of normal	allowed]
	•
	or, B1, but x or r or \bar{x} etc: 0
$H_1: p < 0.14$	
1 22 21 1 1 1 1 1 1	or implied, e.g. N(3.08, 2.6488) or Po(3.08)
	$r = 2 \text{ or } 3 \text{ terms}, or P(\le 0) = 0.036 \text{ and CR}$
	t. 0.388 , or CR is = 0
	0.1 or CR with 2, OK from Po but <i>not</i> from N
	n type and conclusion, needs binomial, at least
	ot from P(< 2)
	me acknowledgement of uncertainty
	nal: B2 M1 A0 B0 M0]
	ed, or $p > 0.14$, $P(\ge 2)$: B1M1A2B0M1A1]
(ii) Selected independently B1 Independent selection	
	lements equally likely (no credit if not
	on selection)
	of size <i>n</i> equally likely": B1 only unless
	Binomial conditions]
5 (i) B1 Horizontal straight B1 Symmetrical U-sha	
	ped curve ling relationship between the two and not
	-2, 2], curve through (0,0)
extending beyond [-2, 2], curve unougn (0,0)
(ii) S is equally likely to take any B2 2 Correct statement a	bout both distributions, $$ on their graph
	ly, or partial description: B1]
T is more likely at extremities Not "probability of	
(iii) $ \frac{5}{64} \int_{-2}^{2} x^{6} dx = \frac{5}{64} \left[\frac{x^{7}}{7} \right]_{-2}^{2} = \frac{20}{7} $ M1 Integrate $x^{2}g(x)$, line Correct indefinite in the correct of $\frac{5}{64} \int_{-2}^{2} x^{6} dx = \frac{5}{64} \left[\frac{x^{7}}{7} \right]_{-2}^{2} = \frac{20}{7} $ M1 Correct indefinite in the correct indefinite indefinite in the correct indefinite indefinite indefinite indefinite indefinite indefinite indefinite in the correct indefinite ind	
$\begin{bmatrix} 64 \end{bmatrix}_{-2}$ and $\begin{bmatrix} 64 \end{bmatrix}_{-2}$ $\begin{bmatrix} 7 \end{bmatrix}_{-2}$ $\begin{bmatrix} 7 \end{bmatrix}$ $\begin{bmatrix} A1 \\ B1 \end{bmatrix}$ Confect indefinite $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ or $\begin{bmatrix} 0^2 \end{bmatrix}$ subtracted of	$r E(X) = 0 \text{ seen, } not \int x^2 f(x) dx - \int x f(x) dx$
	$1 \pm (21) = 0$ Section, $110i$ for $1(A) \cup A = JAI(A) \cup A$
- $ 0$ 0 0 0 0 0 0 0 0 0	
$\begin{vmatrix} -0^{2} \\ = \frac{20}{7} \end{vmatrix}$ Answer $\frac{20}{7}$ or $2\frac{6}{7}$	or a.r.t. 2.86, don't need 0

				theme January 20. $50.0 \pm z\sqrt{(1.96/81)}$, allow one sign only, allow $\sqrt{\text{errors}}$ $z = 1.96$ in equation (not just stated)
	4733		Mark So	theme January 20 Janua
6	(i)	$50.0 \pm 1.96 \sqrt{\frac{20.25}{81}} = 50.0 \pm 0.98$ $= 49.02, 50.98$	M1 B1 A1A1	$50.0 \pm z\sqrt{(1.96/81)}$, allow one sign only, allow $\sqrt{\text{errors}}$ $z = 1.96$ in equation (<i>not</i> just stated) Both critical values, min 4 SF at some stage (if both 3SF, A1)
		\overline{W} < 49.02 and \overline{W} > 50.98	$A1A1$ $A1\sqrt{5}$	CR, allow \leq / \geq , don't need \overline{W} , $$ on their CVs, can't recover [Ans 50 ± 0.98 : A1 only] [SR: 1 tail, M1B0A0; 50.8225 or 49. 1775: A1]
	(ii)	$\frac{50.98 - 50.2}{0.5} = 1.56$	M1 A1 A1	Standardise one limit with same SD as in (i) A.r.t. 1.56, allow − Can allow √ here
		$\frac{49.02 - 50.2}{0.5} = -2.36$ $\Phi(1.56) - \Phi(-2.36) = 0.9315$	M1 A1 5	A.r.t2.36, allow + if very unfair Correct handling of tails for Type II error Answer in range [0.931, 0.932] [SR 1-tail M1; -1.245 or 2.045 A1; 0.893 or 0.9795 A1]
	(iii)	It would get smaller	B1 1	No reason needed, but withhold if definitely wrong reason seen. Allow from 1-tail
7	(i)	$\hat{\mu} = \bar{t} = 13.7$ $\frac{12657.28}{64} - 13.7^2 [= 10.08]; \times \frac{64}{63}$	B1 M1 M1	13.7 stated Correct formula for biased estimate $\times \frac{64}{63}$ used, or equivalent, can come in later
		$= 10.24$ $H_0: \mu = 13.1, H_1: \mu > 13.1$ $\frac{13.7 - 13.1}{13.7 - 13.1} = 1.5 \text{ or } p = 0.0668$	A1 B2	Variance or SD 10.24 or 10.2 Both correct. [SR: One error, B1, but x or t or \overline{x} or \overline{t} , 0]
		$\frac{1.5 < 1.645 \text{ or } 0.0668 > 0.05}{\sqrt{10.24/64}}$	M1 A1	Standardise, or find CV, with $\sqrt{64}$ or 64 $z = a.r.t. 1.50$, or $p = 0.0668$, or CV 13.758 [$\sqrt{64}$ on z]
		Do not reject H_0 . Insufficient	B1 M1	Compare z & 1.645, or p & 0.05 (must be correct tail), or $z = 1.645$ & 13 with CV Correct comparison & conclusion, needs 64, not μ = 13.7
		evidence that time taken on average is greater than 13.1 min	A1 11	Contextualised, some acknowledgement of uncertainty [13.1 – 13.7: (6), M1 A0 B1 M0]
	(ii)	Yes, not told that dist is normal	B1 1	Equivalent statement, <i>not</i> " <i>n</i> is large", don't need "yes"
8	(i)	N(14.7, 4.41)	M1	Normal, attempt at <i>np</i>
		Valid because	A1	Both parameters correct
		np = 14.7 > 5; nq = 6.3 > 5	B1 B1	Check $np > 5$; If both asserted but not both nq or $npq > 5$
		$1 - \Phi\left(\frac{15.5 - 14.7}{\sqrt{4.41}}\right) = 1 - \Phi(0.381)$	B1	[Allow " n large, p close to $\frac{1}{2}$ "]
		(,)	M1	Standardise, answer < 0.5 , no \sqrt{n}
		= 1 - 0.6484 = 0.3516	A1	z, a.r.t. 0.381
	,		A1 7	Answer in range [0.351, 0.352] [Exact: M0]
	(ii)	$\bar{K} \sim N(14.7, 4.41/36)$	M1	Normal, their <i>np</i> from (i)
		$[= N(14.7, 0.35^2)]$ Valid by Central Limit Theorem	A1√ B1	Their variance/36 Refer to CLT or large n (= 36, not 21), or " $K \sim N$ so $\bar{K} \sim N$ ",
		as 36 is large	Bi	not same as (i), not $np > 5$, $nq > 5$ for \overline{K}
		$\Phi\left(14.0 + \frac{1}{72} - 14.7\right) = \Phi(-1.96)$	M1	Standardise 14.0 with 36 or $\sqrt{36}$
		$\Phi\left(\frac{14.0 + \frac{1}{72} - 14.7}{\sqrt{4.41/36}}\right) = \Phi(-1.96)$	A1	cc included, allow 0.5 here, e.g. 14.5 – 14.7
		= 0.025	A1 A1 7	z = -1.96 or -2.00 or -2.04, allow + if answer < 0.5 0.025 or 0.0228 [0.284 loses last 2] [Po(25.2) etc: probably 0]
	OR:	$B(756, 0.7) \approx N(529.2, 158.76)$	M1M1A1	×36; N(529.6,); 158.76
			B1	CLT as above, or $np > 5$, $nq > 5$, can be asserted here
		$\Phi\left(\frac{504.5 - 529.2}{\sqrt{158.76}}\right) = \Phi(-1.96)$	M1	Standardise 14×36
		= 0.025	A1 A1	cc correct and \sqrt{npq} 0.025 or 0.0228

4734 Probability & Statistics 3

1	T has a Poisson distribution $E(T)=28\times0.75+4\times6.4$ $= 46.6$ $Var(T)=46.6$	B1 M1 A1 B1√	4	From sum of Poissons Ft $E(T)$ only if Poisson
2 (i) (ii)	Use $F(Q_3)=0.75$ or $\int_{Q_3}^{\infty} \frac{1}{5} e^{\frac{1}{4}u} du = 0.25$ Solve to obtain $Q_3 = 4.65$ AEF eg 4ln(16/5) $f(u) = \begin{cases} \frac{1}{5} e^u & u < 0, \\ \frac{1}{5} e^{\frac{1}{4}u} & u \ge 0. \end{cases}$	M1 M1A1 B1 B1	2	M1 for solving similar eqn A0 for \geq 4.65
3 (i) (ii)	Use $28 \pm zs$ z=2.326 $s^2 = 28 \times 72/1200$ (25.0, 31.0) $2 \times 2.326 \sqrt{(0.28 \times 0.72/n)} \le 0.05 \text{ AEF}$ Solve to obtain n Smallest $n = 1745$ e.g. Variance is an approximation	M1 M1 M1 A1	4	Accept s=c/√n for M1 Accept 0.28 with corresponding s Or 1199 Accept (25, 31) Or = or ≥ Solving similar equn Accept 1746,1750 Or normal is approx or Or p only an estimate
4 (i) (ii)	$c = 1/20$ $\int_{25}^{45} \frac{400\sqrt{x} - 240}{20} dx$ $= \left[\frac{40}{3}x^{3/2} - 12x\right]$ $= 2118(£)$ $$	M1 A1 A'1 M1 M1 M1	3	Correct indefinite integral 2120 or better than 2118 Or 31.4 cao

5 (i)	$H_0: \mu_2 = \mu_1$, $H_1: \mu_2 > \mu_1$, where μ_1 and μ_2 are the mean concentrations in the lake before and after the spillage respectively	B1 B1	2	For both hypotheses Allow in words if population mean used.
(ii)	$\overline{X}_2 - \overline{X}_1 \ge zs$ z=1.645 s=0.24 $\sqrt{(1/5+1/6)}$	M1 A1 B1		Accept $>$, $=$, $<$. \leq , ts
(iii)	≥ 0.2391 $P(\overline{X}_2 - \overline{X}_1 < 0.2391)$ $z = [0.2391 - 0.3]/s$	A1 M1	4	Or >; 0.239 May be implied
	p=0.3376 This is a large probability for this error	M1 A1 B1	4	ART 0.337 or 0.338 Relevant comment
6 (i)	Use $B \sim B(29, 0.3)$, $G \sim B(26, 0.2)$ $E(F)=29\times0.3+26\times0.2=13.9$ $Var(F) = 29\times0.3\times0.7+26\times0.2\times0.8=10.25$	M1 M1A M1A		
(ii)	B: $np = 8.7$, $nq=20.3$ G: $np = 5.2$, $nq=20.8$ All exceed 5, so normal approximation valid for each $F \sim N(13.9, 10.25)$ (approximately) (Requires $P(F \le n) = 0.99$) $[n + 0.5 - 13.9]/\sqrt{(10.25)}$; = 2.326, their 10.25	B2 M1v M1E		Must check numerically B1 for checking one distribution Use normal. May be implied Standardise M0 if variance has divisors cc Solving similar
	n = 20.85 Need to have 21 spares available SR Using B(55, 0.2527): B1; M1(N(13.9, 10.39); M1B1M1A0 (Max 5/8)	A1	8	No cc, lose last A1 (n = 22) Wrong cc, lose A1A1

		1	70
7 (i)	Requires population of (2nd mark – 1st mark) to be normally distributed	B1	Cloud
	$H_0: \mu_d = 0, H_1: \mu_d > 0$		
	$T_2 - T_1 : -1 - 1 \ 2 \ 0 - 2 \ 2 \ 3 \ 2$	M1	
	$\overline{d} = 0.625$, $s^2 = 3.411 (3^{23}/_{56} \text{ or }^{191}/_{56})$	B1B1	
	Use 2.998	B1	
	EITHER: $t = 0.625/\sqrt{(3.411/8)}$	M1	
	= 0.957	A1	M0 if clearly z
	OR: CV(CR), $\bar{d} \ge 2.998\sqrt{3.411/8}$		
	, , ,	M1	
	= 1.958	A1	
	EITHER 0.957<2.998 OR 0.625 < 1.958		
	Do not reject H_0 , there is insufficient evidence	M1	
	of improvement	8	With comparison and conclusion
(ii)	Use $E(X_2 - X_1 + k) = 0.625 + k$	M1	
()	Requires $(0.625+k) / \sqrt{(3.411/8)} \ge 2.998$	A1√	
	Giving $k \ge 1.33$		
	Increase each mark by 2	A1 3	Allow 1.33
0 (1)	25 (20.46.0) (7.7	3.54	
8 (i)	Mean= (20+16+9)/75	M1	
	= 0.6	A1	
	3p = 0.6, p = 0.2 AG	A1 3	
(ii)	H_0 : B(3, p) fits the data	B1	Or: X~B(3,p) or B(3,0.2)
(11)	$(H_1: B(3,p))$ does not fit the data)	DI	Not 'Data fits model'
	Expected values		Not Data his model
	38.4 28.8 7.2 0.6	M1	Use B(3,0.2)×75
	30.4 20.0 7.2 0.0	A1	At least 2 correct
		A1	All correct
	Combine last two cells	B1	All collect
	$\chi^2 = 5.6^2/38.4 + 8.8^2/28.8 + 3.2^2/7.8$	M1	With one correct
	$\lambda = 3.0730.4 \pm 0.0720.0 \pm 3.277.0$	A1	At least 2 correct Ft E values
	= 4.818	AIV A1	
	-4.010	AI	Accept 4.82 cao
	4.818 > 3.841	B1√	ft 4.818
	Reject H ₀ and conclude that there is		SR1 If cells not combined:
	insufficient evidence that $B(3p)$ fits	M1	B1M1A1A1B0M1A1A0B1(5.991)M1
	the data.	10	SR2:E-values rounded :B1M1A1A1
			B1M1A1A0(4.865)B1M1
(iii)	2.74 < 3.841, accept H ₀ conclude that		Accept with no reason if evidence of method
(111)	B(6,p) fits the data	B1	in (ii)
	2(0,p) 1110 1110 11111	1	()
	I	1 *	1

4736 Decision Mathematics 1

1	(i)	A	В	C	D		M1	A, B and C correct for first pass	
		614	416	1	198	(A=198)	A1	D = 198 on first pass	
		198	891	2	693	(A=693)	M1	sca at second and third passes	
		693	396	3	297		A1	Second and third passes correct	[4]
	(ii)	0					B1	0	[1]
	(iii)	To make the algorithm terminate		B1	So that it does not get stuck in a loop	[1]			
								Total =	6

M1 A graph with five vertices and at least three correct vertex orders A1 A graph with five vertices of orders 1, 2, 2, 3, 4 [2] (ii) Semi-Eulerian M1 Unless their graph was not connected, in which case the answer is 'neither' It has exactly two odd nodes A1 (Unless their graph was not connected, in which case follow this through) [3] (iii) A tree with five vertices would only have four arcs, but this graph has six Or A tree must have at least two vertices of order 1 [4] Total = 6	2	(i)	eg		Graph need not be simple or planar	
(ii) Semi-Eulerian M1 Unless their graph was not connected, in which case the answer is 'neither' It has exactly two odd nodes (Unless their graph was not connected, in which case the answer is 'neither' (Unless their graph was not connected, in which case follow this through) (iii) A tree with five vertices would only have four arcs, but this graph has six Or A tree must have at least two vertices of order 1 [2]				M1		
(ii) Semi-Eulerian M1 Unless their graph was not connected, in which case the answer is 'neither' It has exactly two odd nodes A1 (Unless their graph was not connected, in which case follow this through) [2] (iii) A tree with five vertices would only have four arcs, but this graph has six Or A tree must have at least two vertices of order 1 [2]				A1	• 1	
It has exactly two odd nodes A1 (Unless their graph was not connected, in which case follow this through) [2]			Y			[2]
(iii) A tree with five vertices would only have four arcs, but this graph has six Or A tree must have at least two vertices of order 1 which case follow this through) B2 Give B1 for an incomplete reason, eg 'too many arcs' or 'it has a cycle'		(ii)	Semi-Eulerian	M1		
have four arcs, but this graph has six Or A tree must have at least two vertices of order 1 eg 'too many arcs' or 'it has a cycle' [2]			It has <u>exactly</u> two odd nodes	A1	1 '	[2]
		(iii)	have four arcs, but this graph has six Or A tree must have at least two vertices	B2		
			of order 1			[2]

ANSWERED ON INSERT

3	(i)					
		AB = 9	B_{\bullet} E_{\bullet}	M1	Not selecting <i>CF</i> (working seen on list)	
		DF = 14		A 1	Selecting correct arcs (working seen on	
		BD = 16			list)	
		CD = 18	$A \longrightarrow D \longrightarrow D$)		
		FG = 20		M1	A spanning tree drawn	
		<i>CF</i> = 22	C	A 1	Correct (minimum) spanning tree drawn	
		EG = 23			, , , , , , , , , , , , , , , , , , , ,	
		<u>EF = 26</u>				
		AC = 27	Total weight $= 100$	B1	100 cao	
		DE = 28	_			
		4D = 29				
		<i>DG</i> = 31				
		BE = 37				[5]

4736	S Mark	Sche	Follow through from part (i) if possible Weight of MST on reduced network	Mymathsch
(ii)	Delete EG from spanning tree 100 - 23 = 77 Two shortest arcs from E are EG and EF	B1	Follow through from part (i) if possible Weight of MST on reduced network	OUG
	77 + 23 + 26 = 126 Lower bound = 126	M1 A1	Adding two shortest arcs to MST 126 cao	[3]
(iii)	A-B-D-F-G-E – stall	M1	A-B-D-F-G-E	
	Misses out vertex C	A1	Cannot continue because B, D and F have already been visited	[2]
(iv)	B-A-C-D-F-G-E-B	M1	Tour starts $B - A - C - D - F -$	
	Upper bound = 148	A1 B1	Correct tour, starting and ending at <i>B</i> 148 cao	[3]
(v)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 B1	(Accept correct working starting from <i>G</i> , if seen) At least three sets of temporary labels correct, with no extras Temporary labels all correct, with no extras Permanent labels correct	
	$ \begin{array}{c cccc} C & 4 & 27 & F & 5 & 39 \\ \hline 27 & & & & & & & & & & & \\ Weight = 56 & & & & & & & & & \\ \end{array} $	B1 B1	Order of labelling (correct or follow through their permanent labels) 56 cao	[4]
	Route = $A - B - D - G$	B1	A - B - D - G cao	[2]
(vi)	A, B, C and G are odd	B1	Identifying or using A, B, C, G (seen)	
	AB = 9 $AC = 27$ $AG = 56CG = \underline{42} BG = \underline{47} BC = \underline{34}51$ 74 $90Repeat AB and CG (C - F - G) = 51$	M1 A1	At least one correct pairing seen or total seen (not just six weights) All three totals correct, or explanation of how it is known that other pairings are too	
	Weight = $300 + 51 = 351$	B1	long 351 cao	[4]
	weight = 300 + 31 = 331	וטו	Total =	23

ANSWERED ON INSERT

4	(i)	8	B1	cao	[1]
	(ii)	1 comparison and 1 swap	B1	1 and 1	[1]
	(iii)	76 65 21 13 88 62 67 28 34	B1	Correct list (complete)	
		2 comparisons and 1 swap	B1	2 and 1	[2]
	(iv)	C S		Underlined values correct in 3 rd and 4 th	
		<u>76 65 21 13</u> 88 62 67 28 34 1 0	M1	passes, values not underlined may be left	
		<u>88 76 65 21 13</u> 62 67 28 34 4 4		blank	
			M1	Similarly for 5 th and 6 th passes, follow	
		<u>88 76 65 62 21 13</u> 67 28 34 3 2		through slips in previous passes	
		<u>88 76 67 65 62 21 13</u> 28 34 5 4	A1	Similarly for 7 th and 8 th passes, but cao	[3]
				(Dependent on both M marks)	
		<u>88 76 67 65 62 28 21 13</u> 34 3 2		Reasonable attempt at Comp and Swap	
		<u>88 76 67 65 62 34 28 21 13</u> 4 3	A1	1 4 3 5 3 4 cao in figures	
			A1	0 4 2 4 2 3 cao in figures	[3]

(v)	Shuttle sort uses 23 comparisons and 17		Follow through their totals if possible	
	swaps			
	Shuttle sort is more efficient	M1	Choosing shuttle sort with a reason or	
	because		with totals seen (here)	
	although it uses the same number of swaps	A1	Correct reason stated (comparisons and	
	as bubble sort it uses fewer comparisons		swaps both compared, in words)	[2]
			Total =	12

5	(i)	Katie must spend at least 8 minutes preparing	M1	Identifying why there is less than 60	
	(1)	the first batch of cookies so she has at most	1411	minutes of baking time (or seeing 52)	
		52 minutes of baking time.	A1	Explaining why 4 is the greatest possible	
		$52 \div 12 = 4.3$, hence at most 4 batches		number of batches	
	(ii)	The last batch takes 12 minutes to bake,		Explaining why total time for preparation	[2]
		so Katie has (at most) 48 minutes of	В1	cannot exceed 48 minutes	
		preparation time			
		$8x + 12y + 10z \le 48 \Rightarrow 4x + 6y + 5z \le 24$	B1	$8x + 12y + 10z \le 48$ seen or explicitly	
		as given		referred to	[2]
	(iii)	Must be integer valued	B1	Integers	[1]
	(iv)	P = 5x + 4y + 3z	B1	5x + 4y + 3z or any positive multiple of	
				this	
		Assumes that she sells all the cookies	B1	Assumes she sells them all	
		(batches) that she makes			[2]
	(v)	P x y z s t			
		1 -5 -4 -3 0 0 0 0 1 1 1 1 1 0 4 0 4 6 5 0 1 24	M1	Correct use of slack variable columns	
		0 1 1 1 1 0 4	A1	Objective row correct (cao)	
		0 4 6 5 0 1 24	A1	Constraint rows correct (cao)	[3]
		$4 \div 1 = 4, 24 \div 4 = 6, 4 < 6$	D.1	Working need not be seen	
		Pivot on the 1 in the x column	B1	Correct pivot choice (row 2) (cao)	
				Fallow theory of the sin table on and nivet	
		P x y z s t I 0 I 2 5 0 20 0 I I I I 1 0 4 0 0 2 I -4 I 8		Follow through their tableau and pivot choice, if possible	
		$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	sca pivoting $(x, t \text{ cols}, P \text{ not decreased})$	
		$\begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 4 \\ 0 & 0 & 2 & 1 & -4 & 1 & 8 \end{bmatrix}$	A1	Correct tableau (final column contains no	
			AI	negative values)	
		$Row 1 = R1 + 5 \times R2$		liegative varues)	
		$Row 1 = R1 + 3 \times R2$ $Row 2 = R2 \div 1$	В1	Showing valid method,	
		$Row 3 = R3 - 4 \times R2$		may imply row 2	
		K0W 3 - K3 - 4×K2			
				Follow through their tableau, if reasonable	[4]
		y = 4 $y = 0$ $z = 0$ $P = 20$		(non-negative variables)	` '
		x = 4, y = 0, z = 0, P = 20			
		Katie should make 4 batches of plain	M1	Reading off values from tableau	
		cookies, and no chocolate chip or fruit	A1	(<u>may be implied</u> from answer)	
		cookies, to give a profit of £20.		Interpretation: 4 batches of plain cookies	
		<u> </u>		(may imply none of others)	
			A 1	Interpretation: £20	[[2]
					[3]

4737 Decision Mathematics 2

(i)	Stage	State	Action	Working	Maximin		Answered on insert	
	Siage	0	0	10	10			
	1	1	0	11	11			
	1 '	2	0	14	14			
		3	0	15	15			
		0	0	min(12, 10)=10	- 10			
		V	2	min(10, 14)=10	10	M1	Transferring maximin values from stage 1	
			0	min(13, 10)=10	·		correctly	
	2	1	1	min(10, 11)=10		M1	Completing working column for stage 2 (method)	
			2	min(11, 14)= 11	11			
			1	min(9, 11)= 9		M1	Calculating maximin values for stage 2 (method)	
		2	2	min(10, 14)= 10	10	IVII	Calculating maximin values for stage 2 (method)	
			3	min(7, 15)=7				
		3	1	min(8, 11)=8		A1	Maximin values correct for stage 2 (cao)	
			3	min(12, 15)= 12	12			
			0	min(15, 10)=10		M1	Transferring maximin values from stage 2	1
	3	0	1	min(14, 11)=11			correctly	
			3	min(16, 10)=10 min(13, 12)=12	12	A1	Working column for stage 3 correct (cao)	
			<u>, , , , , , , , , , , , , , , , , , , </u>	min(13, 12)-12	12			16
								'
(ii)	Maximi	1 value =	= 12			B1	12 (cao)	
`				(1;3)-(2;3)-(3: 0)	M1	Route, or in reverse, follow through their table if	1
			(~, ~)	() -) (-) -) (- , - ,		possible, condone omission of (0; 0)	I
						A1	Correct route, including (0; 0) (cao)] [
						111	Total =	

2	(i)	Activity	Duration	Immediate		Answered on insert	NOTA'CO
			(days)	predecessors			.6
		A B	8 10	-			
		C	12	- -			
		D	12	A B	B1	Precedences correct for D and E	
		E	3	В			
		F	4	BC	B1	Precedences correct for F and G	
		G	3	C			
		Н	7	DEFG	B1	Precedences correct for H , I and J	
		I J	<i>4</i> 5	F G H I			[3]
\vdash	(ii)	J		пі			
	(11)				l		
			10 15	D(1)			
			•	D(1)			
		A(8)/	/ 🗼		16 16		
		7110)		7)	
					H(23 23 28 28	
	0 0	\angle _B	3(10)	E(3)/		J(5)	
			10 12 🔪	•			
				F(4)	1/4)		
		2(12)			1(4)	/	
		C(12)	\ <i>!</i>	´ 12 12	16 16		
			/				
			•	→			
			12 12	<i>G</i> (3)			
		ı			1 .		
					M1	Substantially correct attempt at forward pass	
						(at most one independent error)	
					M1	Substantially correct attempt at backward pass	
					IVII	(at most one independent error)	
						No follow through, 28 given in question	
					A1	Both passes wholly correct	
		0.77			D1		[4]
\vdash	(:::)	Critical act	tivities C F	H J	B1	CFHJ and no others (no follow through)	[4]
	(iii)	A B	C D E	F G H I J	B1 B1	J correct H and I correct	
		1 1	3 2 1	1 2 2 3 4	B1	F and G correct	
			1		B1	D and E correct	
					B1	B and C correct	
					B1	A correct	[6]
	(iv)		delay 1 day		B1	1	
		Maximum	delay 3 days		B1	3	[2]
						Total =	15

473	7 Mark	Schen	Answered on insert Imply method mark from 18, 20 or 22	Th _{SC}
(i)			Answered on insert	
	4+3-2+8-2+7 = 18 litres per second	M1 A1	Imply method mark from 18, 20 or 22 cao	[2]
) 2	3 litres per second flow out of <i>B</i> (arc <i>BD</i>) so only 2 litres per second can enter <i>B</i> from <i>E</i> and only 1 litre per second can enter <i>B</i> from <i>S</i> .	B1	At B: 3 out and 1 + 2 in	
1 s	At least 4 litres per second flow out of E to G , 2 litres per second from E to B and 2 litres per second from E to H , so 8 litres per second must flow into E from C .	B1	At <i>E</i> : (at least) 4 + 2 + 2 out	
1 1 r	8 litres per second flows from C to E and at most 11 litres per second enters C from S, so at most 3 litres per second flows from C to H. Also, 2 litres per second flow from E to H so the most that can be set to H is 5 litres per second. But at least 5 litres per second.	M1	Considering C to show flow in CH is at most 3 Must explicitly refer to ≤ 3 , or $2 \leq \text{flow} \leq 3$, not just stating 3	
r	enter H is 5 litres per second. But at least 5 litres per second leave H along HT , hence the flow in HT is 5 litres per second.	A1	At <i>H</i> : 2 + 3 in	[4]
(iii)	A 3 D 2 F 3 3 4 8	M1	Substantially correct attempt (at least 12 correct) (Not shown as excess capacities and potential	
S	S B E G T C G	A1	backflows) All correct (cao)	
F	Flow augmenting route: SADFT or SADGT	B1	Either of these (correct) flow augmenting routes	
	Cut: $X = \{S, B\}, Y = \{A, C, D, E, F, G, H, T\}$	B1		[4]
	Or $X = \{S, A, B\}, Y = \{C, D, E, F, G, H, T\}$		Either of these (correct) cuts described in any way, or marked clearly on diagram	
	B would have at most 3 litres per second entering it		Identifying that problem is at <i>B</i>	
a	and at least 5 litres per second leaving.	A1	A correct explanation Total =	[2] 12

				7 0
4 (i)	$A \longrightarrow P$ $B \longrightarrow R$	B1	Bipartite graph correct	Cloud Co
	C S S T W	B1	Incomplete matching correct (clearly shown, or shown on a separate bipartite graph)	
(ii)	E-P-A-R-B-S	M1 A1	A valid alternating path from <i>E</i> to <i>S</i> , written out This path written out (not just shown on diagram)	[2]
	Anya = restaurant review Ben = sports news Connie = theatre review Derek = weather report	B1	A = R $B = S$ $C = T$ $D = W$ $E = P$ (cao)	
	Emma = problem page			[3]
(iii)		B1	Adding a dummy column of equal 'costs' of at least 60 minutes	[9]
	Reduce rows 5	M1	Substantially correct attempt at reducing rows (at most one error)	
	Then reduce columns 4	M1	Substantially correct attempt at reducing columns (at most one error) Correct reduced cost matrix, with rows reduced first (cao)	
				[4]

4	5		4	5	2
0		1	0	0	1
4	3	0	4	6	1
5	2	0	4	2	0
3	4	0	4	5	0
6	5	0	3	4	2

Augment by 2

2	3	0	2	3	2
0	0	3	0	0	3
2	1	0	2	4	1
3	0	0	2	0	0
1	2	0	2	3	0
4	3	0	1	2	2

Cross out 0's using 4 (minimum number of) lines

2	3	0	2	3	2
0		3	0	0	3
2	1	0	2	4	1
3	0	0	2	0	0
1	2	0	2	3	0
4	3	0	1	2	2

Augment by 1

1	2	0	1	2	2
0	0	4	0	0	4
1	0	0	1	3	1
3	0	1	2	0	1
0	1	0	1	2	0
3	2	0	0	1	2

To get a complete allocation

1	2		1	2	2
0	0	4	0	0	4
1		0	1	3	1
3	0	1	2	0	1
0	1	0	1	2	0
3	2	0	0	1	2

Jeremy Kath Laura Mohammed Ollie Sports Problems Restaurant Weather Theatre 51 + 53 + 55 + 57 + 56 = 272 $272 \times £0.25 = £68$

M1 A1

B1

M1

A1

M1 Follow through their reduced cost matrix for crossing through 0's and augmenting (without errors)

A1 Augment by 2 in a single augmentation (cao)

Alternative

2	3	0	2	3	2
0	0	3		_ 0	3
2	1	0	2	4	1
3	0	0	_ 2	_ 0	0
1	2	0	2	3	0
4	3	0	1	2	2

1	2	0	1	2	1
0	0	4	0	0	3
1	0	0	1	3	0
3	0	1	2	0	0
1	2	1	2	3	0
3	2	0	0	1	1

Follow through their matrix for crossing through 0's and augmenting (correct for theirs) (Either) correct final matrix (cao)

 1
 2
 0
 1
 2
 1

 0
 0
 4
 0
 0
 3

 1
 0
 0
 1
 3
 0

 3
 0
 1
 2
 0
 0

 1
 2
 1
 2
 3
 0

 3
 2
 0
 0
 1
 1

J = S K = P L = R M = W O = T

Correct method £68 (cao) with units

Total =

[3] 16

[4]

473	37 Mark	k Scheme	January 20. 5 3 or 7	Dallys
i)	5	B1	5	
	$(10 - 4) \div 2$ = 3	M1 A1	3 or 7	[3]
(ii)	D E F row min S 0 4 -2 -2 -2	M1 M1 A1	Calculating row minima Calculating col maxima (or equivalent) Sanjeev or S (not just -2 or identifying row)	[*]
	Play-safe for cricket club (cols) is Fiona	A1	Fiona or F (not just 0 or identifying column)	
	Not stable because $-2 \neq 0$	B1	Any correct explanation	[5]
(iii)	Fiona Ursula	B1 B1	Follow through their play-safe strategies if possible F U	[2]
(iv)	Sanjeev's row dominates Tom's row	B1	This or any equivalent statement about Tom and Sanjeev (note: Tom is named in the	
	Doug Fiona's column dominates Doug's (once Tom's	M1	question) Doug	
	row has been removed)	A1	This or any equivalent statement about Doug and Fiona	[3]
(v)	E: $4p - 6(1-p) = 10p - 6$ F: $-2p$	M1	Follow through their choice from part (iv) Both expressions seen in any form (note: D gives $2(1-p) = 2 - 2p$)	
	$ \begin{vmatrix} 10p - 6 = -2p \\ \Box p = 0.5 \end{vmatrix} $	A1	p = 0.5 (cao)	[2]
(vi)	Delete T row 0 4 -2 2 -6 0 Multiply entries by -1 to show scores for Cricket club	B1	Delete Troy and multiply entries by 1	
	$\begin{bmatrix} 0 & -4 & 2 \\ -2 & 6 & 0 \end{bmatrix}$	ВІ	Delete T row and multiply entries by -1	
	Add 4 to make entries non-negative 4 0 6 2 10 4	B1	Add 4 to make entries non-negative	
	Choose Doug with probability x , Euan with probability y and Fiona with probability z .	B1	Identifying meaning of x , y , z or implied by reference to S for $4x + 6z$ and U for $2x + 10y + 4z$	
	If Sanjeev plays, expected score = $4x + 6z$ If Ursula plays, expected score = $2x + 10y + 4z$			[3]
(vii)	$z = \frac{5}{6}$ \square maximum value for $m = 5$	M1		[2]
	Hence, maximum value for $M = 1$	A1		[4]

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) January 2009 Examination Series

Unit Threshold Marks

78	92	Maximum Mark	Α	В	С	D	E	U
4721	Raw	72	57	50	43	37	31	0
4/21	UMS	100	80	70	60	50	40	0
4722	Raw	72	59	51	44	37	30	0
7122	UMS	100	80	70	60	50	40	0
4723	Raw	72	55	48	41	34	28	0
4723	UMS	100	80	70	60	50	40	0
4724	Raw	72	62	54	46	38	31	0
4724	UMS	100	80	70	60	50	40	0
4725	Raw	72	57	49	41	34	27	0
4725	UMS	100	80	70	60	50	40	0
4726	Raw	72	49	44	39	34	30	0
4/20	UMS	100	80	70	60	50	40	0
4727	Raw	72	54	47	40	33	27	0
4/2/	UMS	100	80	70	60	50	40	0
4728	Raw	72	62	54	46	38	30	0
4720	UMS	100	80	70	60	50	40	0
4729	Raw	72	61	51	41	31	21	0
4/23	UMS	100	80	70	60	50	40	0
4730	Raw	72	57	48	40	32	24	0
4/30	UMS	100	80	70	60	50	40	0
4732	Raw	72	58	50	43	36	29	0
4/32	UMS	100	80	70	60	50	40	0
4733	Raw	72	58	49	41	33	25	0
4/33	UMS	100	80	70	60	50	40	0
4734	Raw	72	50	43	37	31	25	0
4/34	UMS	100	80	70	60	50	40	0
4736	Raw	72	58	51	45	39	33	0
4/36	UMS	100	80	70	60	50	40	0
4737	Raw	72	60	53	46	39	33	0
4/3/	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3890	300	240	210	180	150	120	0
3891	300	240	210	180	150	120	0
3892	300	240	210	180	150	120	0
7890	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
7892	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	24.1	50.4	72.7	85.8	95.1	100	960
3892	28.1	59.4	78.1	90.6	93.8	100	32
7890	26.8	58.1	84.4	92.2	96.6	100	205
7892	33.3	75.0	91.7	91.7	100	100	12

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums_results.html

Statistics are correct at the time of publication.

www.mymathscloud.com

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

14 - 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

